
Available online at: https://proceeding.researchsynergypress.com/index.php/rsfconferenceseries1
RSF Conference Series: Business, Management, and Social Sciences

e-ISSN 2807-5803/p-ISSN 2807-6699
Volume 2 Number 1 (2022): 218-230

Corresponding author
christ.alexander45@gmail.com
DOI: https://doi.org/10.31098/bmss.v2i1.536 Research Synergy Foundation

A Proposal on How to Use Software Reliability Growth Model to Build
Confidence in Dashboard Testing

Alexander Christian1, Christopher Wibowo1, Indriati Bisono1, Hanijanto Soewandi2

1International Business Engineering Program, Universitas Kristen Petra, Surabaya, Indonesia

2MicroStrategy, Tysons Corner, VA, USA

Abstract

Software testing as an integral part of software development leads to the question of when the
software (or application/dashboard) can be released and how confident that most
defects/bugs/faults have been discovered. This paper discussed a relatively new but simple and
practical proposal that can be used to build confidence for releasing software (or
applications/dashboards). Instead of contrasting various software reliability growth models (SRGM)
and choosing which one is the best, we use them to collaborate to help make decisions. We
demonstrate our proposal with 18 real-life datasets that are publicly available in the literature. We
use three widely used SRGMs, namely: Bass, Gompertz, and Logistic in our proposal to identify when
we can stop testing. It turns out that when the testing has found most defects, most (if not all) of the
SRGMs will converge to similar value for the maximum potential defects in the system.

Keywords: SRGM, Bass, Gompertz, Logistic, Practical Stopping Rule.

This is an open access article under the CC-BY-NC license

INTRODUCTION

Recently, software testing becomes an integral part of software development process and software
engineering. While commercial company usually does not follow a rigid “defense and aerospace”
software development process, all usually have their own software development life cycle, together
with functional (as well as non-functional) requirements, specification, design and code review
process, etc. Regardless the organization, the ultimate questions that executive wants to answer are
usually: when a dashboard (or an application/software) can be released and how confident that
most defects/bugs have been discovered during testing/development, i.e., some kind of metrics for
the decision maker to make a good and informed decision. Please note that often times an executive
can decide to release a software with known bugs (for various reasons, including: no more time to
develop or no more defect in the system). Regardless, the above two questions are very hard to
answer since there is no a priori knowledge about how many defects are in the system (software).

Even though there is no a priori knowledge about the number of defects in the software and the
number of defects can vary from few hundreds to thousands, almost all researchers believed that
the total defects in a software is finite. Given the rise of software reliability concept that have been
developed in the past 50+ years, Cusick (2019) give an overview of Software Reliability Engineering
(SRE) history.

According to Wood (1996) there are two types of software reliability models:

1. Defect density model – those that attempt to predict software reliability from the design
parameters;

2. Software reliability growth model (SRGM) – those attempt to predict software reliability from
test data.

RSF Conference Series: Business, Management, and Social Sciences, Vol.2 (1), 218-230

The Application of U-shaped Line Balancing at Furniture Manufacturing
Frittandi, Rainisa Maini Heryanto, David Try Liputra, Angling Sugiatna

│ 219

These models attempt to statistically correlate defects detection data over time with known
functions such as: Gompertz, Logistics, Bass, etc. The focus in this paper is the second type.

To predict how many potential defects that exist in a software, we used 3 known functions, namely:
Bass Diffusion – Innovation (Bass for short), Gompertz, and Logistics. We use empirical data to
demonstrate how decision maker can gain confidence in making decision to declare the general
availability of the software (or product/application) that is being tested. We propose very simple
rules, yet practical, usable, and very intuitive – in particular, for high level executive for decision -
making.

LITERATURE REVIEW

The use of Bass, Gompertz, and/or Logistics in SRGM is not new. Many researchers have used them
previously, e.g., Kapur et.al. (2006), Chakravarty (2007), Shaik and Akthar (2011), Gandhi et.al.
(2019), and very recently Yaghoobi (2021) as well as Haque & Ahmad (2021).
Most (if not all) research we found focused on how good a model can fit in predicting the growth of
the software reliability. They compared various models to see which model provide the best fit.
Surprisingly, many still use R-square (or Adjusted R-square) as a possible criterion in evaluating
models even though Spiess and Neumeyer (2010) have demonstrated some problems with R-
squared for non-linear least square via Monte Carlo simulation. We don’t intend to compare various
models. In fact, we recommend for practical reason that several models being used together to
illustrate several possible scenarios for the future.

Bass Diffusion Model

Ohba (1984) was perhaps the first that proposed what many researchers call a flexible SRGM. This
model has been developed under the assumption that the more that errors are detected, the more
undetected errors become detectable (notice the similarity with Bass model assumption). The
model has the following differential equation:
𝑑𝑁(𝑡)

𝑑𝑡
= 𝑏(𝑡)[𝑚 − 𝑁(𝑡)], where: 𝑏(𝑡) = 𝑏 × 𝐾(𝑡) and 𝐾(𝑡) = 𝑟 + (1 − 𝑟)

𝑁(𝑡)

𝑚
 (1)

initial condition 𝑁(0) = 0.
Bittanti et.al. (1988) proposed very similar model with slight twist. Their differential equation is:
𝑑𝑁(𝑡)

𝑑𝑡
= 𝑏(𝑚)[𝑚 −𝑁(𝑡)], where: 𝑏(𝑚) = 𝑘𝑖 + (𝑘𝑓 − 𝑘𝑖)

𝑁(𝑡)

𝑚
 (2)

Here, 𝑘𝑖 and 𝑘𝑓 are initial and final values of the defect exposure coefficient. If 𝑘𝑖 = 𝑘𝑓, then it

reduces to the exponential model. If 𝑘𝑓 ≫ 𝑘𝑖, the defect growth curve become an S-shape function.

Later, Kapur & Garg (1992) assumed that the detection of errors also results in detection of some
of the remaining errors without these errors causing any failure. This leads to the following
differential equation (which is exactly the Bass Diffusion model):
𝑑𝑁(𝑡)

𝑑𝑡
= 𝑝[𝑚 − 𝑁(𝑡)] +

𝑞

𝑚
𝑁(𝑡)[𝑚 −𝑁(𝑡)] = [𝑝 +

𝑞

𝑚
𝑁(𝑡)] [𝑚 − 𝑁(𝑡)] (3)

With 𝑁(0) = 0, the solution to the above differential equation in (3) is given by the following
equation:

𝑁(𝑡) = 𝑚
1−𝑒−(𝑝+𝑞)𝑡

1+
𝑞

𝑝
𝑒−(𝑝+𝑞)𝑡

 (4)

We use the term Bass model from (4) as one of our models in this study.

Gompertz Diffusion Model in SRGM

It seems that Gompertz diffusion model is very popular in Japan – Satoh (2000) stated that many
Japanese computer manufacturers and software houses have applied the Gompertz curve model.

RSF Conference Series: Business, Management, and Social Sciences, Vol.2 (1), 218-230

The Application of U-shaped Line Balancing at Furniture Manufacturing
Frittandi, Rainisa Maini Heryanto, David Try Liputra, Angling Sugiatna

220 │

He also provided a discrete Gompertz equation and argued that it is more stabled than the
continuous one. Several other papers we found, e.g., Ohishi et.al. (2005), Ohishi et.al. (2009), Prasad
et.al. (2016), and Yahoobi (2021) seem to support the popularity of Gompertz diffusion model, not
just in Japan, but also worldwide.
There are a number of parameterization of Gompertz. Some of those are more useful compared to
others, due to how easy the parameters to be interpreted. This paper will use this
reparameterization:
𝑁(𝑡) = 𝑚 × 𝑒𝑥𝑝(−𝑏 × 𝑐𝑡) (5)
where:
𝑁(𝑡) = the expected value of total defect as a function of time
m = upper asymptote (in SRGM, m will be the total number of potential defects in the system)
b = integration constant
c = growth-rate coefficient.

Logistic Diffusion Model in SRGM

The Logistic diffusion model is an extended version of Malthus’ simple population growth model,
which stated that the rate of population growth is proportional to the population at time t. The
newly extended function added a carrying capacity m, which results in a bounded population. In
the case of software testing, N(t) is the number of defects found in regards to time t. The Logistics
Equation can be written as the following,

𝑁(𝑡) =
𝑚

1+(
𝑚−𝑁0
𝑁0

)𝑒−𝑟𝑡
 (6)

where N0 is the number of defects found at the theoretical time t = 0, with m being the carrying
capacity, or in other words the maximum possible defect found at a given time t. The value r
represents the growth rate of the defects that would occur, assuming that the population size of the
defect within the system can grow up to an infinite size.
Ohishi (2009) stated that Sakata (1974) is perhaps the first that applies both Gompertz and Logistic
diffusion models in SRGM in Japan. Several other papers related to Logistic Diffusion model such
as: Huang et.al. (1997), Satoh & Yamada (2002), Pham (2005), Rafi et.al. (2010), Zang & Pi (2018),
and finally Haque & Ahmad (2021) clearly demonstrate that this model is widely researched and
used.

Stopping Rule in Testing

Dalal & Mallows (1988) is perhaps one of the most cited articles when it comes to stopping rule in
software testing. They presented a very elegant mathematical model as a sequential decision
problem, where an optimal stopping rule has to be found minimizing expected loss. However, Höhle
(2016) wrote a blog and discuss the criticisms to Dalal & Mallows’ proposal. In addition, having a

ratio
𝑐

𝑓
 (where c = the cost of fixing a bug and f = the cost of testing plus the opportunity cost of not

releasing the software up to time t) is actually not that easy in practice. In this paper, we propose a
much simpler approach that does not depend on any cost estimation.

METHODOLOGY

As we have stated, our research objective is to help decision makers to make decision on when to

stop testing, and to have a good level of confidence by understanding the testing effort.

We make the following basic assumptions for our analysis:

1. The number of defects in any (software) system is finite and unknown.

RSF Conference Series: Business, Management, and Social Sciences, Vol.2 (1), 218-230

The Application of U-shaped Line Balancing at Furniture Manufacturing
Frittandi, Rainisa Maini Heryanto, David Try Liputra, Angling Sugiatna

│ 221

2. Perfect debugging – when a defect is discovered, it can be fix without introducing another defect.

This is usually true for dashboard development (or relatively small software development). This

assumption also implies that we only have one Sigmoid (or concave) curve.

Generally speaking, even though all researchers believe that the number of defects in a software

system is finite, it is still very difficult to know how many defects are there. If the software is a

newer version, there could be some idea from the previous system. However, this is not necessarily

true for a complex system. Even for a minor release, a small modification for a code can result into

a good number of defects introduced into the system. Therefore, it is very intuitive to accept that

when there are only minimal amounts of testing data, the prediction of the maximum number of

defects in the software system would be a wild guess at the beginning. So, we have our first

hypothesis:

H1: Regardless the method (for all methods), early prediction of the estimated number of defects

in the system (m) will never be good.

As corollary, since there is no easy way to know the estimated number of defects in the system at

the early period of testing, we can also have the following two additional hypotheses:

H2: The estimated number of defects in the system will therefore have a high variability for all

methods.

H3: The variation of estimated number of defects in the system will be high across all methods.

As the testing progresses, it will become clearer how many defects will be in the software.
Therefore, it is imperative to have the following additional hypothesis (that later can be utilized as
our proposal for stopping criteria):
H4: When most defects are discovered, the estimated number of defects (for all methods) will be

stable over time.
H5: The variation of estimated number of defects across all methods will also become less, i.e., all

(good) SRGM will converge to similar “true” numbers of maximum defects toward the end.
We decided to present and illustrate our proposal using publicly available datasets. Some of these
datasets are from open-source software projects such as: Apache and Gnome. Some are commercial
software (Tandem from HP, PL/I from IBM, Stratus from Cisco, etc.), while others are
government/military in the US & China. Some have multiple versions, etc. (see Table 1).

RSF Conference Series: Business, Management, and Social Sciences, Vol.2 (1), 218-230

The Application of U-shaped Line Balancing at Furniture Manufacturing
Frittandi, Rainisa Maini Heryanto, David Try Liputra, Angling Sugiatna

222 │

Table 1. Public datasets, their statistics, and sources

Data Sets (DS) Test Freq. Length of Tests Range of Defect/Test Avg. of Defect/Time Known Defects Notes/References

DS01 Daily 111 0 - 49 4.33 481
Real-Time (Tohma

et.al 1991)

DS02a Release 1 Weekly 20 0 - 16 5 100

Tandem, HP,

commercial (Wood

1996)

DS02b Release 2 Weekly 19 14-Jan 6 120

Tandem, HP,

commercial (Wood

1996)

DS02c Release 3 Weekly 12 12-Jan 5.08 61

Tandem, HP,

commercial (Wood

1996)

DS02d Release 4 Weekly 19 0 - 6 2.25 42

Tandem, HP,

commercial (Wood

1996)

DS03 Weekly 19 Feb-37 17.26 328

PL/I, IBM,

commercial (Ohba

1984)

DS04a Release 1 Weekly 73 0 - 15 4.93 360

Stratus, Cisco,

commercial (Mullen

1998)

DS04b Release 2 Weekly 120 0 - 9 1.67 200

Stratus, Cisco,

commercial (Mullen

1998)

DS05 Weekly 21 0 - 18 6.48 136

Government/Military

(Musa 1985, Musa

et.al. 1987, Kapur

& Younes 1995)

DS06 Weekly 17 21-Jan 8.47 144
Mid-size (Xie et.al.

2006)

DS07 Monthly 60 0 - 16 2.43 146

webERP, open

source (Li & Pham

2019)

DS08 Daily 73 0 - 13 5 367
Government/Military

(Bao et.al. 2000)

DS09a Apache

2.0.35
Daily 43 0 - 8 1.72 74

Apache, open

source (Li & Yi

2016)

DS09b Apache

2.0.36
Daily 103 0 - 5 0.49 50

Apache, open

source (Li & Yi

2016)

DS09c Apache

2.0.39
Daily 164 0 - 3 0.36 58

Apache, open

source (Li & Yi

2016)

DS10a Gnome 2.0 Monthly 19 8-Jan 3.94 78
Gnome, open source

(Gandhi et.al. 2018)

DS10b Gnome 2.2 Monthly 24 0 - 9 2.35 54
Gnome, open source

(Gandhi et.al. 2018)

DS10c Gnome 2.4 Monthly 46 0 - 7 1.17 54
Gnome, open source

(Gandhi et.al. 2018)

RSF Conference Series: Business, Management, and Social Sciences, Vol.2 (1), 218-230

The Application of U-shaped Line Balancing at Furniture Manufacturing
Frittandi, Rainisa Maini Heryanto, David Try Liputra, Angling Sugiatna

│ 223

Early Period

Table 1 indicates that there are 3 types of test frequencies, namely: daily, weekly, & monthly. Given
that we need to estimate 3 parameters for each model, we decided to define our methodology as
follows:
• For daily DS, early prediction is defined as the first 21, 22, …, 25 days respectively, i.e., we will

use defects from days 1 – 21, days 1 – 22, days 1 – 23, days 1 – 24, & days 1 – 25 to estimate the
maximum number of estimated defects in the system (m);

• For weekly DS, early prediction of m is obtained using the first 5, 6, …, 9 weeks respectively,
and

• For monthly DS, we use the months 1 – 6, 1 – 7, …, 1 –10 to get the early prediction of m.

Stabilization Period

Similarly, what we define as stabilization periods are as the last 3 data points, e.g.,
• For DS01 – it means we use days 1 – 109, 1 – 110, and 1 – 111 respectively.
• For DS06 (weekly) – we will use weeks 1 – 15, 1 – 16, and 1 – 17 respectively.
• For DS10a – we use months 1 – 17, 1 – 18, and 1 – 19 respectively.

It is important to explain that we purposely pick only 3 sets of data points since we believe that
some systems (out of 18 that we consider) may not have too many data points, and they may not
reach stability yet. Therefore, we did not pick 5 sets of data points like in the Early period.

R-Packages to Use

To obtain the parameters m, p, and q for Bass model, we use R packages: diffusion (Schaer and
Kourentzes (2018)) and also DIMORA (Federico (2021)). We choose these R packages to estimate
the Bass parameters since the first one (diffusion) is simply using the traditional OLS (ordinary
least square) with linear approximation suggested by Bass (1969) while the second one (DIMORA)
is using NLS (non-linear least square). Similarly, we use nls with SSGompertz (self-starter
Gompertz) and growthrates library (Petzoldt, 2020) to calculate Gompertz’ parameters: m, b, and
c. Finally, to obtain the parameters m, 𝑁0, and r for the Logistics Equation in (12), we use packages:
growthcurver by Sprouffske (2020) and growthrates by Petzoldt (2020) that are available in R.

FINDINGS AND DISCUSSION

To prove our hypothesis, we run R-packages to our 18 datasets as we have described in above and
we summarize the result in Figure 1.

Figure 1 shows boxplot of CVs of m (maximum potential defect) values from five early predictions
(as outline in the previous section) and three stable predictions using three SRGMs (Bass,
Gompertz, and Logistic). It is very easy to see that almost all values for m’s are way off from the
actual known defects (with few exceptions). Similarly, almost all coefficient of variations (CVs) is
more than 5%, with median 32.5%, 31%, 18.5% for Bass, Gompertz and Logistic respectively. the
Therefore, this demonstrates the correctness of H1 and H2. Meanwhile for stable period
predictions, practically almost all CVs for m (maximum potential defects) is now less than 5% (with
very few exceptions). Notice also how close the 𝜇𝑚 (mean of m) to the known defects. This
concludes our proof for hypothesis H4 and H5.

RSF Conference Series: Business, Management, and Social Sciences, Vol.2 (1), 218-230

The Application of U-shaped Line Balancing at Furniture Manufacturing
Frittandi, Rainisa Maini Heryanto, David Try Liputra, Angling Sugiatna

224 │

Table 2 shows the average and CVs of m
value from three SRGMs (Bass, Gompertz, &
Logistic) for the first 3 sets of early
prediction data points. Again, we can easily
see that most CVs tend to be more than 5%
(with few exceptions). Even those few
exceptions, the average value of m is clearly
far from the known defect of the system.
Therefore, we can conclude that this result
demonstrates the correctness of hypothesis
H3.

Stopping Rule Proposal

Now, we are in a good position to outline our
proposal for when we can release a software
(or dashboard) after a period of testing. Let’s
define couple more terminologies to be able
to quantify our proposal clearly. Consider a

distribution frequency of defects found per unit time. Based on previously stated assumption, we
believe it is reasonable to assume a Bell
curve. Therefore, we can have the following
stable (software) system definitions as our
stopping rule proposal.

Table 2. Average & CVs of m for the first 3

sets of Early Period Prediction

Definition 1: (simple, classic, & equally crucial definition)
A system under testing is called stable at time t if the moving average (MA) of defects (x) found for
a certain period n, i.e., from time (t – n +1) to time t, is less than or equal to a factor (0 < α1 < 1,

0.0

0.5

1.0

1.5

2.0

Early Stable

Period

v
a
lu

e

Model

Bass

Gompertz

Logistic

Figure 1. Coefficient of Variations from

early and stable predictions using Bass,

Gompertz and Logistic Models.

μm CV(m) μm CV(m) μm CV(m)

DS01 252.09 12.72% 253.22 8.57% 250.33 6.90% 481

DS02a Release 1 109.97 51.45% 213.99 83.92% 106.3 33.65% 100

DS02b Release 2 83.73 45.17% 109.53 53.89% 159.43 52.00% 120

DS02c Release 3 5009.96 139.95% 31091.56 141.15% 118.49 59.95% 61

DS02d Release 4 11.82 5.03% 28.48 32.15% 38.62 37.93% 42

DS03 119.32 3.29% 122.79 8.66% 244.07 54.07% 328

DS04a Release 1 18.97 4.64% 25473.97 140.26% 906.01 126.66% 360

DS04b Release 2 10.84 4.58% 15.94 6.96% 21.39 7.85% 200

DS05 7.42 45.14% 13.6 38.19% 16.27 39.55% 136

DS06 135.66 20.81% 119.26 12.70% 125.16 6.64% 144

DS07 12.5 1.13% 7877722.85 141.42% 46.27 15.98% 146

DS08 151.03 8.97% 150.83 7.98% 149.4 7.00% 367

DS09a Apache 2.0.35 110.91 54.89% 110 54.27% 113.27 53.43% 74

DS09b Apache 2.0.36 37.56 32.27% 36.97 31.73% 36.15 30.85% 50

DS09c Apache 2.0.39 48.34 46.77% 48.36 39.07% 49.54 35.47% 58

DS10a Gnome 2.0 40.15 22.21% 68.44 43.36% 84.65 24.85% 78

DS10b Gnome 2.2 55.22 37.70% 58.27 31.80% 42.71 13.61% 54

DS10c Gnome 2.4 39.63 26.95% 25.07 8.72% 28.69 9.23% 54

Known

Defect
Data Sets (DS)

1
st

 Early Time Period 2
nd

 Early Time Period 3
rd

 Early Time Period

RSF Conference Series: Business, Management, and Social Sciences, Vol.2 (1), 218-230

The Application of U-shaped Line Balancing at Furniture Manufacturing
Frittandi, Rainisa Maini Heryanto, David Try Liputra, Angling Sugiatna

│ 225

usually we set α = 5% – 20%) multiply by previously known maximum defect than can be found in
a unit time, i.e., we can mathematically write as:
𝑥𝑡−𝑛+1+⋯+𝑥𝑡

𝑛
 ≤ ⌈𝛼1max

𝑡
{𝑥𝑖}⌉ (10)

Please note that the larger n is, the more confidence we can
have. Similarly, the smaller α1 is, the more confidence we
can have that our (software) system does not have any
remaining defect. We put a ceiling on the rhs of eq (10)
since the number of defects should be an integer (but this
is not very crucial).
Definition 2: (from H1 – H5)
A system under testing is called stable at time t if the total
cumulative defects found at time t is more than or equal to
a factor (𝛽, e.g., we can set 𝛽 = 95%) multiply by the
maximum potential defects (m) from our SRGM.
Mathematically, we propose to represent this definition as:
∑ 𝑥𝑖
𝑡
𝑖=1 ≥ 𝛽𝑓(𝑚𝐵𝑡 ,𝑚𝐺𝑡 ,𝑚𝐿𝑡

)

(11)
In the equation (11) above, 𝑓(𝑚𝐵𝑡 , 𝑚𝐺𝑡 , 𝑚𝐿𝑡

) could be

defined as
𝑚𝐵𝑡

+𝑚𝐺𝑡
+𝑚𝐿𝑡

3
 (arithmetic mean) or √𝑚𝐵𝑚𝐺𝑚𝐿

3

(geometric mean) or even 𝑚𝑖𝑛{𝑚𝐵𝑡 , 𝑚𝐺𝑡 ,𝑚𝐿𝑡
}. The most

important point, though, is that:
CV{𝑚𝐵𝑡 ,𝑚𝐺𝑡 ,𝑚𝐿𝑡

} ≤ 𝛼2

 (12a)
Again, usually α2 = 5% is considered good for coefficient of
variation. Moreover, as we have demonstrated previously,
if we want to be more robust, we could also add an

additional condition that CV{𝑚𝐵𝑡−𝑛+1 , … ,𝑚𝐵𝑡
} ≤ α2,

CV{𝑚𝐺𝑡−𝑛+1 , … , 𝑚𝐺𝑡
} ≤ α2, and CV{𝑚𝐿𝑡−𝑛+1 , … ,𝑚𝐿𝑡

} ≤ α2, or

we can simply write mathematically as:

𝑚𝑎𝑥 {

CV{𝑚𝐵𝑡−𝑛+1 , … ,𝑚𝐵𝑡
}, CV{𝑚𝐺𝑡−𝑛+1 , … ,𝑚𝐺𝑡

},

CV{𝑚𝐿𝑡−𝑛+1 , … ,𝑚𝐿𝑡
}

} ≤ 𝛼2

 (12b)
With the above definitions, our stopping rule proposal can
be illustrated by the following flowchart in Figure 2.

Numerical Examples

To illustrate our stopping rule proposal with DS10b, we carried out calculation as in Table 7 (using
𝛼1 = 𝛼2 = 5%, n = 5, 𝛽 = 95%, and n = 4).
Lastly and for completeness, the result of applying our proposed stopping criteria (using definition
1 only, using definition 2 only, and using definition 1 ∩ definition 2) to all 18 datasets with test
frequency, 𝛼1 , 𝛼2, 𝛽, and n as given here:
• Daily: 𝛼1 = 𝛼2 = 5%, 𝛽 = 95%, and n = 5
• Weekly/Monthly: 𝛼1 = 𝛼2 = 5%, 𝛽 = 95%, and n = 3

Start

Count defect data according to unit
time of choice (day, week, or month)

xₜ = number of defects at time t
Cₜ = cumulative defects at time t

Calculate Moving Average
xₜ for n period, i.e., MA(xₜ, n)

Calculate mG, mL, and mB (or any
other m according to the SRGM of

choice)

Stop

Is MA(xₜ, n) α

max{x₁,...,xₜ} ?

Is mB, mG, and mL stable?

yes

yes

Is Cₜ β f(mB ₜ , mG ₜ ,
mL ₜ)?

yes

no

no

no

Figure 2. Flowchart for

Stopping Rule proposal

RSF Conference Series: Business, Management, and Social Sciences, Vol.2 (1), 218-230

The Application of U-shaped Line Balancing at Furniture Manufacturing
Frittandi, Rainisa Maini Heryanto, David Try Liputra, Angling Sugiatna

226 │

is summarized in Table 4.

RSF Conference Series: Business, Management, and Social Sciences, Vol.2 (1), 218-230

The Application of U-shaped Line Balancing at Furniture Manufacturing
Frittandi, Rainisa Maini Heryanto, David Try Liputra, Angling Sugiatna

│ 227

CONCLUSION AND FURTHER RESEARCH

When the testing had discovered most defects, most (if not all) SRGMs will converge to similar value

for the maximum potential defects in the system (m). Therefore, rather than contrasting various SRG

models, we can utilize this information to build our confidence using several SRG models at once in

order to provide stopping rule without losing too many valuable times to release the

software/application that is being tested.

When the predicted values of maximum potential defects from various SRGM have small coefficient

of variation, we know it very likely represents true maximum potential defects of the system.

Furthermore, by requiring coefficient of variation for n consecutive periods of m to be less than 𝛼

(say: 5%), we ensure that the prediction of maximum potential defects by any SRGM to be stable.
Hence, increasing our confidence.

Together with a simple, practical, and yet classic definition of stable system, we can develop a robust

stopping criteria for software testing. Of course, it is up to individual organization on how to

implement the stopping criteria. We provided various parameters that can be tuned to suit the need.

Using publicly available datasets in various journals, we demonstrated that it is actually better to use

multiple software reliability growth models (SRGMs) to build confidence, and we can identify which

projects are released on a good state, and which ones are released by executive decision.

Interestingly, from all public datasets that we have collected, there are some that exhibit 2nd wave

phenomenon. In SRGM, this could mean that perfect debugging assumption is not always true (the

other possibility is an introduction of new feature late in the cycle). This is an interesting subject that

has application in various different aspects of life and extend beyond this research.

Another area of further research is a more stable parameter prediction that do not change much with

additional data. This is actually presented in Vincent et.al. (2022) already by applying similar

technique as Levitt et.al. (2021), i.e., to linearize Sigmoid functions.

RSF Conference Series: Business, Management, and Social Sciences, Vol.2 (1), 218-230

The Application of U-shaped Line Balancing at Furniture Manufacturing
Frittandi, Rainisa Maini Heryanto, David Try Liputra, Angling Sugiatna

228 │

Table 3. Numerical Example for DS10b with α1 = α2 = 5%, β = 95%, and n = 4

Table 4. When to Release Software

α1 = 0.05 α2 = 0.05 β = 0.95

week defect cum defect MA(x , 4) RunMax def #1 mB CV(mB) mG CV(mG) mL CV(mL)
CV(mB,

mG, mL)
def #2

1 5 5 5 5 0

2 4 9 4.5 5 0

3 5 14 4.67 5 0

4 5 19 4.75 5 0

5 9 28 5.75 9 0 46.2 84 35.46 37.70% 0

6 5 33 6 9 0 64.45 16.49% 77.22 4.20% 33.13 3.41% 31.80% 0

7 2 35 5.25 9 0 43.77 17.93% 49.24 21.44% 35.12 2.98% 13.61% 0

8 1 36 4.25 9 0 39.67 19.55% 42.93 27.74% 37.15 4.06% 5.93% 0

9 2 38 2.5 9 0 43.7 20.25% 41.84 27.22% 38.95 6.04% 4.71% 0

10 3 41 2 9 0 43.05 3.96% 43.05 6.58% 42.03 6.62% 1.13% 0

11 2 43 2 9 0 45.15 4.68% 45.15 2.77% 44.08 6.61% 1.13% 0

13 1 44 2 9 0 46.2 2.76% 46.2 3.88% 45.1 5.52% 1.13% 0

14 0 44 1.5 9 0 46.2 2.85% 46.2 2.85% 45.1 2.85% 1.13% 1

15 4 48 1.75 9 0 50.4 4.29% 50.4 4.29% 49.2 4.29% 1.13% 1

16 1 49 1.5 9 0 51.45 4.92% 51.45 4.92% 50.23 4.92% 1.13% 1

17 1 50 1.5 9 0 50.31 4.05% 52.5 4.77% 51.25 4.77% 1.75% 1

18 1 51 1.75 9 0 51.73 1.23% 53.55 2.26% 52.28 2.26% 1.46% 1

19 0 51 0.75 9 0 52.3 1.41% 53.55 1.65% 52.28 1.65% 1.13% 1

20 0 51 0.5 9 0 52.43 1.63% 53.55 0.85% 52.28 0.85% 1.08% 1

21 0 51 0.25 9 1 52.36 0.54% 53.55 0.00% 52.28 0.00% 1.10% 1

22 1 52 0.25 9 1 52.6 0.21% 54.6 0.84% 53.3 0.84% 1.55% 1

23 0 52 0.25 9 1 52.68 0.25% 54.6 0.97% 53.3 0.97% 1.49% 1

24 2 54 0.75 9 0 56.7 3.36% 56.7 2.09% 55.35 2.09% 1.13% 1

Gnome 2.2

Dataset
def #1

only

def #2

only

def #1 ∩

def #2
Dataset

def #1

only

def #2

only

def #1 ∩

def #2

DS01 64 26 75 DS06 N/A 11 N/A

DS02 Release 1 19 N/A N/A DS07 23 33 N/A

DS02 Release 2 N/A 19 N/A DS08 N/A N/A N/A

DS02 Release 3 N/A 12 N/A DS09 Apache 2.0.35 33 38 33

DS02 Release 4 N/A 17 N/A DS09 Apache 2.0.36 23 81 81

DS03 N/A N/A N/A DS09 Apache 2.0.39 48 72 75

DS04 Release 1 60 62 N/A DS10 Gnome 2.0 N/A N/A N/A

DS04 Release 2 50 39 50 DS10 Gnome 2.2 20 14 20

DS05 N/A N/A N/A DS10 Gnome 2.4 18 18 18

When to Release the Software When to Release the Software

RSF Conference Series: Business, Management, and Social Sciences, Vol.2 (1), 218-230

The Application of U-shaped Line Balancing at Furniture Manufacturing
Frittandi, Rainisa Maini Heryanto, David Try Liputra, Angling Sugiatna

│ 229

REFERENCES

Cusick, J.J., 2019. The first 50 years of software reliability engineering: A history of SRE with first

person accounts. arXiv preprint arXiv:1902.06140.

Wood, A., 1996. Predicting software reliability. Computer, 29(11), pp.69-77.

Chakravarty, S., 2007. Adapting Bass-Niu model for product diffusion to software

reliability. Reliability: Theory & Applications, 2(1 (5)), pp.22-33.

Rafi, S.M. and Akthar, S., 2011. Software Reliability Growth Model with Bass Diffusion Test-Effort

Function and Analysis of Software Release Policy. International Journal of Computer Theory and

Engineering, 3(5), p.671.

Gandhi, N., Sharma, H., Aggarwal, A.G. and Tandon, A., 2019. Reliability growth modeling for oss:

a method combining the bass model and imperfect debugging. In Smart Innovations in

Communication and Computational Sciences (pp. 23-34). Springer, Singapore.

Yaghoobi, T., 2020. A software reliability growth model with Gompertz-logarithmic failure time

distribution. International Journal of Quality & Reliability Management.

Asraful Haque, M. and Ahmad, N., 2021. A logistic growth model for software reliability estimation

considering uncertain factors. International Journal of Reliability, Quality and Safety

Engineering, 28(05), p.2150032.

Spiess, A.N. and Neumeyer, N., 2010. An evaluation of R2 as an inadequate measure for nonlinear

models in pharmacological and biochemical research: a Monte Carlo approach. BMC

pharmacology, 10(1), pp.1-11.

Ohba, M., 1984. Software reliability analysis models. IBM Journal of research and

Development, 28(4), pp.428-443.

Bittanti, S., Bolzern, P., Pedrotti, E., Pozzi, M. and Scattolini, R., 1988. A flexible modelling

approach for software reliability growth. In Software reliability modelling and identification (pp.

101-140). Springer, Berlin, Heidelberg.

Kapur, P.K. and Garg, R.B., 1992. A software reliability growth model for an error-removal

phenomenon. Software Engineering Journal, 7(4), pp.291-294.

Satoh, D., 2000. A discrete Gompertz equation and a software reliability growth model. IEICE

TRANSACTIONS on Information and Systems, 83(7), pp.1508-1513.

Ohishi, K., Okamura, H. and Dohi, T., 2005, July. Gompertz software reliability model and its

application. In 29th Annual International Computer Software and Applications Conference

(COMPSAC'05) (Vol. 1, pp. 405-410). IEEE.

Ohishi, K., Okamura, H. and Dohi, T., 2009. Gompertz software reliability model: Estimation

algorithm and empirical validation. Journal of Systems and software, 82(3), pp.535-543.

Prasad, R.S., Narayana, V.S. and Mohan, G.K., Software reliability using SPC: Gompertz.

Huang, C.Y., Kuo, S.Y. and Chen, Y., 1997, November. Analysis of a software reliability growth

model with logistic testing-effort function. In Proceedings The Eighth International Symposium on

Software Reliability Engineering (pp. 378-388). IEEE.

Satoh, D. and Yamada, S., 2002. Parameter estimation of discrete logistic curve models for software

reliability assessment. Japan Journal of Industrial and Applied Mathematics, 19(1), pp.39-53.

Pham, H., 2005. A generalized logistic software reliability growth model. Opsearch, 42(4), pp.322-

331.

Rafi, S.M. and Akthar, S., 2010. Software reliability growth model with logistic-exponential testing

effort function and analysis of software release policy. In Proceedings of international conference on

advances in computer science.

RSF Conference Series: Business, Management, and Social Sciences, Vol.2 (1), 218-230

The Application of U-shaped Line Balancing at Furniture Manufacturing
Frittandi, Rainisa Maini Heryanto, David Try Liputra, Angling Sugiatna

230 │

Zang, S. and Pi, D., 2018. Software Reliability Growth Model for Imperfect Debugging Process

Considering Testing-Effort and Testing Coverage. Transactions of Nanjing University of

Aeronautics and Astronautics, 35(3), pp.455-463.

Dalal, S.R. and Mallows, C.L., 1988. When should one stop testing software?. Journal of the

American Statistical Association, 83(403), pp.872-879.

Zanghi Federico, 2021. DIMORA: Diffusion Models R Analysis, R package version 0.2.0,

https://CRAN.R-project.org/package=DIMORA.

Kathleen Sprouffske, 2020. growthcurver: Simple Metrics to Summarize Growth Curves, R package

version 0.3.1, https://CRAN.R-project.org/package=growthcurver.
Thomas Petzoldt, 2020. growthrates: Estimate Growth Rates from Experimental Data, R package

version 0.8.2, https://CRAN.R-project.org/package=growthrates.

Levitt, M., Scaiewicz, A. and Zonta, F., 2020. Predicting the trajectory of any COVID19 epidemic
from the best straight line. medRxiv. Preprint posted online June, 30.

https://cran.r-project.org/package=DIMORA
https://cran.r-project.org/package=growthcurver
https://cran.r-project.org/package=growthrates

	Bass Diffusion Model
	Gompertz Diffusion Model in SRGM
	Logistic Diffusion Model in SRGM
	Stopping Rule in Testing
	Early Period
	Stabilization Period
	R-Packages to Use
	Stopping Rule Proposal
	Numerical Examples

