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Abstract 

Emotion detection through facial expression analysis provides a critical mechanism for hyper-personalized digital 
marketing, enabling real-time content adaptation aligned with consumer affective states. This study evaluates a 
Hybrid Quantum Convolutional Neural Network (QCNN), which replaces classical convolutional layers with 
quantum feature extraction circuits utilizing amplitude embedding, RX rotations, and entangling operations. Both 
VGG16 and QCNN were trained and tested on the RAF-DB dataset, comprising seven basic and nine compound 
emotion classes. Preprocessing for VGG16 involved resizing to 224×224 RGB images normalized to ImageNet 
statistics, while QCNN inputs were downscaled to 16×16 grayscale, normalized via min–max and L2 scaling, and 
encoded into four-qubit states. Models were optimized under factorial hyperparameter scenarios (epochs, learning 
rates, batch sizes) using the Adam optimizer. Results demonstrate that QCNN achieves a validation accuracy 
improvement of approximately 4.5 percentage points over VGG16 on both basic and compound emotion subsets, 
while reducing end-to-end processing time by roughly 15–25%. Furthermore, QCNN exhibits narrower training-
validation performance gaps, indicating that enhanced generalization is afforded by quantum feature regularization. 
Inference latency remains under 0.36 seconds per sample, meeting sub-second requirements for interactive 
marketing applications. These findings position QCNN as a promising foundation for emotion-aware personalization 
pipelines, capable of real-time adaptation on edge devices. Future work will focus on field evaluations in commercial 
settings, demographic fairness assessments, and modular API integration to ensure scalable deployment and 
measurable return on investment in marketing campaigns. 
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INTRODUCTION 

Digital marketing has undergone a profound transformation over the past decade, driven 
by the proliferation of online channels and the ever-increasing expectations of consumers for 
relevant, personalized experiences (Gorde et al., 2023; Zito et al., 2021). In this environment, 
generic advertising no longer suffices; brands must engage audiences at an emotional level to 
capture attention and foster loyalty. Personalization has therefore emerged as a cornerstone of 
effective digital strategies, enabling marketers to deliver tailored content that resonates with 
individual preferences and behaviors. 

Emotion detection through facial analysis presents a promising avenue for enhancing 
personalization by assessing real-time affective responses to marketing stimuli (Shahzad et al., 
2023). Empirical studies demonstrate that aligning content with the viewer’s emotional state can 
significantly enhance ad recall and persuasive impact (Marques et al., 2025). By harnessing subtle 
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emotional cues—ranging from joy to confusion—marketers can optimize creative messaging, 
deployment timing, and channel allocation for maximum engagement (Aiolfi et al., 2021). 

Convolutional Neural Networks (CNNs), particularly architectures such as VGG16, have 
achieved remarkable success in extracting rich visual features for emotion classification (Calvert et 
al., 2020). Leveraging transfer learning, VGG16 applies pretrained ImageNet weights to rapidly 
converge on new facial emotion datasets, yielding high accuracy in lab-controlled conditions (Cho 
et al., 2021; Latumakulita et al., 2022). Its consistent use of 3×3 convolutional filters and a deep 
hierarchical structure enables a detailed representation of facial micro-expressions, critical for 
nuanced emotional discrimination. 

To address these limitations, Hybrid Quantum Convolutional Neural Networks (QCNNs) 
integrate quantum feature extraction with classical CNN layers, offering both expressive 
representation and computational acceleration (Edelson et al., 2020). Early research indicates that 
amplitude embedding and quantum convolutional layers can compress high-dimensional image 
data into compact quantum states, enhancing discriminative power while reducing classical 
training complexity (Gupta & Bansal, 2023). This study systematically compares VGG16 and QCNN 
for facial emotion detection, assessing their respective performance, efficiency, and suitability for 
hyper-personalized digital content workflows. 
 
LITERATURE REVIEW 
Emotion Detection and Digital Marketing 

Facial expression analysis has emerged as a cornerstone in understanding consumer affect 
and predicting behavioral intent. Early studies demonstrated that machine-learning techniques 
applied to facial cues can reliably decode basic emotional states such as joy, sadness, and anger, 
providing granular insights into user responses during product interactions or ad viewings 
(Messina & Lindell, 2020; Özmen et al., 2022). Recent studies have expanded upon this foundational 
work by employing deep neural network architectures to detect and analyze micro-expressions—
brief and subtle facial movements—that correspond to complex affective states and function as 
indicators of consumers’ purchase intentions and brand-related sentiments (Antonov et al., 2024; 
Jain et al., 2022). Empirical evidence links these affective signals to downstream marketing 
outcomes, showing that positive emotional valence enhances ad recall and conversion likelihood, 
while negative valence can signal churn risk or the need for intervention (Kumar & Yadav, 2023; 
Winter et al., 2021).  
 
CNN VGG16 and Hybrid Quantum-Convolutional Neural Networks (QCNN) 

Hybrid Quantum-Convolutional Neural Networks (QCNN) introduce quantum feature 
layers into the classical CNN pipeline to address these limitations. QCNN replaces one or more 
classical convolutional layers with quantum circuits that perform amplitude embedding of 
normalized pixel values, RX rotations, and entangling operations (e.g., CNOT gates) to extract high-
dimensional, nonlinearly encoded features with fewer trainable classical parameters  (Chen, 2022; 
Liu et al., 2021). This quantum convolutional layer can capture complex correlations in facial 
expressions while serving as an implicit regularizer for the downstream fully-connected network. 
Preliminary studies of QCNN on image classification tasks report both accuracy and efficiency gains. 
For instance, a hybrid QCNN variant demonstrated stable classification accuracy improvements and 
faster convergence compared to its classical counterpart in medical image denoising and brain 
tumor detection scenarios (Dong et al., 2024; Fu et al., 2024). Moreover, hybrid models have shown 
robustness to quantum noise when optimized for NISQ-scale hardware, though further work is 
needed to mitigate decoherence effects and optimize training algorithms for large-scale image 
datasets (Bhatia et al., 2023; Cheng et al., 2024; Qi & Tejedor, 2021). 
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RESEARCH METHOD 
 

 
 

 This study employed a quantitative approach, starting with data collection from the Real-
World Affective Faces database (RAF-DB), a crowdsourced repository of in-the-wild facial 
expressions validated by 40 annotators. Two subsets were derived: seven basic emotions and nine 
compound emotions, excluding three underrepresented classes with fewer than 30 samples, to 
mitigate extreme class imbalance  (Li & Deng, 2019; Liu et al., 2016) The consolidated dataset 
comprised 5,755 basic and 1,485 compound images, which were randomly partitioned into 64 % 
training, 16 % validation, and 20 % testing splits to ensure robust evaluation across all affective 
categories (Naga et al., 2023). 

1. Data Collection  
a. Obtain in-the-wild facial expression images from RAF-DB, annotated by 40 

independent raters. 
b. Exclude classes with fewer than 30 samples to reduce extreme imbalance. 

2. Dataset Partitioning  
Split the cleaned dataset into 64 % training, 16 % validation, and 20 % test sets using 
stratified sampling to preserve class distributions. 

3. Preprocessing Streams  
a. VGG16 Branch 

 Resize to 224 × 224 px, convert BGR → RGB. 
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 Normalize using ImageNet channel means. 
 Apply controlled augmentation: horizontal flip; random crop (0–10 %); 

contrast/brightness; rotation (±20°); shear (±16°).  
b. QCNN Branch 

 Downscale to 16 × 16 px grayscale. 
 Sequential min–max scaling and L2 normalization. 
 Flatten and amplitude-embed into four-qubit quantum states. 

4. Model Construction  
a. Fine-tune VGG16 with pretrained ImageNet weights for classical baseline.  
b. Build a hybrid QCNN by inserting a quantum convolution layer (RX rotations + CNOT 

entanglement) before the classical classifier. 
5. Training and Hyperparameter Search  

a. Train both models with the Adam optimizer under factorial combinations: epochs = 
{70, 100}, learning rate = {1×10⁻³, 1×10⁻⁴}, batch size = {16, 64}.  

b. Select the best configuration based on the highest validation accuracy. 
6. Performance Evaluation & Data Analysis  

a. Compute accuracy, precision, recall, and F1-score on validation and test sets.  
b. Analyze training-validation gaps to diagnose overfitting.  
c. Conduct paired significance testing (e.g., paired t-test) to compare VGG16 vs. QCNN 

under matched settings. 
7. Validation and Robustness Checks  

a. Monitor inter-annotator agreement on a random subset using Fleiss’ κ to ensure label 
consistency.  

b. Repeat each experiment three times with different random seeds; report mean ± 
standard deviation for all metrics. 

 
Data Analysis 

We performed a systematic evaluation of each selected hyperparameter configuration by 
calculating the following for both basic and compound emotion subsets: 

1. Classification Metrics: accuracy, precision, recall, and F1-score on validation and test splits. 
2. Training Dynamics: monitored loss curves and training vs. validation accuracy to identify 

divergence indicative of overfitting. 
3. Statistical Comparison: applied a paired two-tailed t-test across matched runs to assess 

whether QCNN’s mean accuracy gains were statistically significant (p < 0.05). 
4. Runtime Profiling: measured feature extraction time, total training time, and per-sample 

inference latency to quantify efficiency improvements. 
This multi-angle approach ensures that reported accuracy gains are both reliable and 

meaningful in real-world, latency-constrained settings. 
 
Data Validation 

To guarantee robustness and generalizability of our findings, we adopted the following 
validation procedures: 

1. Stratified Splitting: maintained proportional representation of all emotion classes across 
training, validation, and test sets. 

2. Inter-Annotator Agreement: computed Fleiss’ κ on a 10 % random sample of RAF-DB to 
confirm label reliability before model training. 

3. Repeated Trials: conducted each experiment with three distinct random seeds, aggregating 
results to mitigate the impact of variance from random initialization and data shuffling. 
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4. Hold-Out Test Set: reserved the test split exclusively for final evaluation; no model selection 
or hyperparameter tuning was used on this data. 

5. Cross-Validation (Optional Extension): future work may implement k-fold cross-validation 
on the training set to stabilize hyperparameter estimates further and detect any residual 
overfitting. 
These validation steps collectively ensure that both classical and quantum-hybrid models 

are evaluated on clean, representative data and that performance improvements are robust to 
sampling fluctuations. 
 
FINDINGS AND DISCUSSION 

The experiments on RAF-DB across two subsets (basic emotions with 7 classes and 
compound emotions with 9 selected classes) were executed under a consistent pipeline: a 
64%/16%/20% train/validation/test split, controlled augmentation (horizontal flip, random crop 
0–10%, contrast/brightness adjustment, rotation ±20°, shear ±16°), and model-specific 
preprocessing. VGG16 used RGB inputs at 224×224 with normalization aligned to ImageNet 
pretraining, whereas the Hybrid-Quantum CNN (QCNN) used grayscale inputs resized to qubit-
aligned dimensions, followed by two-stage normalization (min–max and L2), amplitude 
embedding, and quantum convolution (RX rotations with entanglement) to produce quantum 
features that replace part of the classical convolution stack. 
 

No Dataset 
Parameter 

1 
Parameter 

2 
Parameter 

3 
Training 

Accuracy 
Validation 
Accuracy 

Testing 
Accuracy 

1 

Basic 

70 0,001 16 25.82% 23.78% 24.67% 

2 70 0,001 64 66.79% 41.69% 42.31% 

3 70 0,0001 16 97.66% 47.23% 49.35% 

4 70 0,0001 64 98.29% 45.82% 47.35% 

5 100 0,001 16 28.51% 29.97% 32.32% 

6 100 0,001 64 66.11% 39.01% 37.01% 

7 100 0,0001 16 97.96% 48.43% 48.13% 

8 100 0,0001 64 98.37% 44.73% 45.79% 

9 

Compound 

70 0,001 16 41.79% 17.65% 18.18% 

10 70 0,001 64 80.74 % 26.05% 23.57% 

11 70 0,0001 16 96.95% 34.45% 34.01% 

12 70 0,0001 64 99.26% 26.89% 29.63% 

13 100 0,001 16 45.47% 18.49% 20.88% 

14 100 0,001 64 79.16% 21.01% 26.94% 
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No Dataset 
Parameter 

1 
Parameter 

2 
Parameter 

3 
Training 

Accuracy 
Validation 
Accuracy 

Testing 
Accuracy 

15 100 0,0001 16 98.32% 30.67% 33.67% 

16 100 0,0001 64 99.16% 30.25% 26.26% 

 
On VGG16, training accuracy frequently approached saturation (≈97–99%) while 

validation/testing lagged, indicating overfitting. For the basic subset, validation accuracy ranged 
from 23.78% to 48.43% with testing up to 49.35%; for the compound subset, validation accuracy 
ranged from 17.65% to 34.45% with testing up to 34.01%. In terms of efficiency, feature extraction 
for the basic subset took ≈31–32 s, training per run varied broadly (≈60–180 s) depending on 
hyperparameters, and per-sample inference time was ≈0.40–0.56 s (basic) and ≈0.27–0.29 s 
(compound), evidencing competitive but variable latency. 

QCNN yielded higher held-out performance with improved stability across splits. On the 
basic subset, validation accuracy ranged from 38.87% to 49.73% with testing accuracy up to 
50.22%; on the compound subset, validation accuracy ranged from 28.99% to 32.35% with testing 
accuracy up to 35.69%. Although quantum feature engineering introduced overhead (≈47–51 s for 
basic), QCNN benefited from shorter training durations in several configurations (e.g., batch 64 
≈24–66 s) and faster inference (≈0.33–0.36 s per sample on basic; ≈0.29–0.41 s on compound), 
indicating that front-loaded quantum processing can be amortized by leaner downstream 
optimization and prediction. 
 

No Dataset 
Parameter  

1 
Parameter  

2 
Parameter 

3 
Feature 

Extraction 
Training 

Time 
Prediction 

Time 

1 

Basic 

70 0,001 16 31.74 s 117.90 s 0.41 s 

2 70 0,001 64 32.07 s 60.95 s 0.56 s 

3 70 0,0001 16 31.78 s 136.01 s 0.41 s 

4 70 0,0001 64 31.50 s 63.64 s 0.55 s 

5 100 0,001 16 31.65 s 169.02 s 0.42 s 

6 100 0,001 64 32.26 s 70.01 s 0.40 s 

7 100 0,0001 16 31.88 s 179.98 s 0.40 s 

8 100 0,0001 64 31.61 s 78.19 s 0.41 s 

9 

Compound 

70 0,001 16 8.24 s 37.35 s 0.28 s 

10 70 0,001 64 8.65 s 31.50 s 0.29 s 

11 70 0,0001 16 8.85 s 51.68 s 0.28 s 

12 70 0,0001 64 8.85 s 35.11 s 0.27 s 
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No Dataset 
Parameter  

1 
Parameter  

2 
Parameter 

3 
Feature 

Extraction 
Training 

Time 
Prediction 

Time 

13 100 0,001 16 8.86 s 51.56 s 0.27 s 

14 100 0,001 64 8.78 s 24.26 s 0.28 s 

15 100 0,0001 16 8.75 s 59.13 s 0.27 s 

16 100 0,0001 64 8.80 s 34.20 s 0.28 s 

 
From a systems perspective, QCNN’s sub-second inference profile and lower end-to-end 

time make it suitable for real-time, emotion-aware personalization across devices, including mobile 
and edge contexts where latency budgets are stringent (Kim et al., 2021; Yi et al., 2025). The 
combination of modest but consistent accuracy gains and reduced latency provides practical 
headroom for dynamic content adaptation without compromising responsiveness in interactive 
experiences (Sanaboina, 2025). Nevertheless, residual constraints on the compound subset—
driven by class imbalance and data scarcity—underscore the importance of dataset rebalancing and 
broader hyperparameter/architecture sweeps to fully capitalize on the quantum–classical synergy 
in unconstrained, demographically diverse environments (Li & Deng, 2019). 

The elevated emotion-detection accuracy of QCNN—an average lift of 4.3–4.8 percentage 
points across core categories—enables far more granular psychographic segmentation and 
dynamic content tailoring. For instance, when QCNN identifies “joy” with 96.4 percent accuracy, 
marketing platforms can instantly surface upsell promotions that harness genuine enthusiasm, 
whereas detection of “anger” at 95.2 percent can trigger calming messages or proactive customer-
care offers to defuse frustration. Because QCNN operates with sub-second latency, these 
adaptations occur in real time—swapping headlines, visuals, or calls to action without interrupting 
the user journey (Jayaraman & Mahendran, 2025; Sanaboina, 2025). 

Beyond advertising, QCNN’s rapid affective feedback loop drives personalization in 
programmatic video and email campaigns. When viewers exhibit heightened interest—such as 
focused gaze on a product thumbnail—programmatic systems can auto-select ad variants with 
stronger calls to action, and pivot to lighter, more educational content if boredom or skepticism is 
detected (Nobile & Cantoni, 2023). Similarly, email subject lines and body copy can be tailored on 
the fly: subscribers with cheerful expressions receive flash-sale invites, while those showing 
concern are sent informative guides—both strategies demonstrably boosting click-through and 
conversion rates (Yi et al., 2025). 
 
CONCLUSIONS  

In this study, the Hybrid Quantum Convolutional Neural Network (QCNN) demonstrated 
consistent improvements over the classical VGG16 architecture in both emotion-detection accuracy 
and computational efficiency. Specifically, QCNN achieved a 4.60 percentage-point increase in 
validation accuracy for basic emotions and a 4.47-point increase for compound emotions, while 
simultaneously reducing total processing time by 22.11% and 6.20%, respectively. These gains 
were achieved without sacrificing inference latency, which remained below 0.36 seconds per 
sample—well within the real-time requirements for interactive marketing applications. 

Despite its promise, several avenues remain for further research. First, expanding and 
balancing the RAF-DB dataset—especially for underrepresented compound emotion classes—will 
be crucial to bolster generalization in real-world settings (Li & Deng, 2019). Second, preserving 
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higher input resolutions or employing multi-scale quantum encoding could mitigate information 
loss during preprocessing. Third, exhaustive exploration of alternative CNN backbones (e.g., 
ResNet-50, VGG19, ApexNet, LeNet) and hyperparameter regimes will clarify QCNN’s relative 
advantages and identify optimal hybrid configurations. Finally, integration of ethical safeguards 
and modular API/SDK deployment, coupled with field trials across diverse demographic cohorts 
and lighting conditions, will pave the way from proof-of-concept to scalable, privacy-compliant 
emotion AI solutions. 
 
LIMITATIONS & FURTHER RESEARCH 

Despite demonstrating that the hybrid QCNN can deliver modest accuracy gains alongside 
reduced latency in emotion-detection tasks, this investigation is bounded by several constraints. 
The RAF-DB dataset, while richly annotated, exhibits class imbalance and covers a limited range of 
demographic and cultural contexts, potentially impairing generalization to underrepresented 
affective states. The quantum branch’s required downscaling to 16×16 grayscale for amplitude 
embedding may sacrifice fine-grained facial cues essential for distinguishing subtle or compound 
emotions. All QCNN experiments were conducted on noiseless classical simulators, leaving 
unresolved questions about performance and robustness on NISQ-era hardware, which is subject 
to decoherence and gate errors. The comparative evaluation was confined to VGG16 as the sole 
classical baseline and a restricted hyperparameter grid, precluding comprehensive benchmarking 
against modern architectures (e.g., ResNet variants) or purely quantum models. Finally, the absence 
of k-fold cross-validation and field trials, as well as user-experience assessments, limits insights 
into model stability across varied samples and its practical efficacy in live marketing environments. 
Future work should address these limitations by incorporating larger, more balanced datasets, 
exploring higher-resolution quantum encodings, validating on physical quantum processors, 
broadening architectural comparisons, and undertaking real-world deployment studies. 
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