A Model for Determining the Thermal Comfort of Fishermen’s Houses on Coasts with Humid Tropical Climate
DOI:
https://doi.org/10.31098/icmrsi.v1i.829Keywords:
Certainty Facto, Expert Syste, GIS, Thermal ComfortAbstract
Fishermen’s houses on the coastal area of Dusun Karama Tengah, located at coordinates 119° 23’ 0” with 119° 23’ 9” BT, and 5° 13’ 28” LS with 5° 13’ 36” LS, with a humid tropical climate, has poor thermal comfort, and is not in the 22,8°C-27,1°C comfort category. Residents and house occupants feel stifled, hot, and uncomfortable during the day. Environmental factors, use of materials, construction, and the architecture of the fishing houses greatly contribute to the thermal comfort, apart from weather and climate factors. The aim of this research is to develop an innovative model for determining the thermal comfort of the fishermen’s homes. This research uses survey methods and observations of several factors that contribute to the thermal comfort during the day. It also uses expert system analysis techniques, certainty factors, based on Geographic Information System (GIS). A total of 107 fishermen’s housing units studied had poor thermal comfort, especially at 11:00-13:00 WITA or at 03:00-05.00 GMT. The poor thermal comfort of the fishermen’s houses is because they do not apply the principles of eco-building, green-architecture, and the lack of: facade, overhang, insulation, trees and parks, as well as the large use of low-density building projects in the form of zinc and triplex ceilings. This research has not taken into account the level of heat reduction of the house materials and the environment, so it is expected to be done in the upcoming research.References
Arifin, I. N. & Hidayat, S. (2018). Pengaruh bukaan terhadap kinerja termal pada Masjid Jendral Sudirman. Vitruvian Jurnal Arsitektur, Bangunan, & Lingkungan, Vol.7 No. 2 Februari 2018 Pages 67-76.
Barnabas, Boyden, Bugnicourt, Costa Leite, T. Deelstra, D. Djoekardi, Y. Hassan, F. K. Kloutse, A. Krtilova, K. Meguro, J. Michelsen & N. D. Peiris (1989). Health principles of housing. United Nations Centre for Human Settlements (Habitat), .
Hadi, D. S. N., Supriyanta & Wibowo, M. F. R. (2023). Efektifitas penghawaan alami dalam kenyamanan termal: Interfensi fasad dan teknologi eco-cooler pada ruang aula. Sinektika Jurnal Arsitektur
Handri, H., Sari, L. H., Munir, A. & Ariatsyah, A. (2021). An evaluation of indoor thermal environment in fisherman housing in West Sumatera. IOP Conf. Series: Earth and Environmental Science 881 (2021) 012029.
Hermawan, Prianto, E. & Setyowati, E. (2015). Thermal comfort of wood-wall house in coastal and mountainous region in tropical area. ScienceDirect, Procedia Engineering 125 725 – 731.
Hidayat, S. 2017. Faktor-faktor kenyamanan termal SCRIBD.
Idawarni Asmal, Baharuddin Hamzah & Ratna, H. (2022). Community response to thermal and its influence to outdoor use. Civil Engineering and Architecture, Vol. 10, 800-815.
Jutraz, A. (2015). How to design healthy building for healthy living? Places And Technology.
Kalumata, T. J. & Indarwanto, M. (2016). Pengaruh lebar sirkulasi terhadap aliran angin pada permukiman padat nelayan, studi kasus permukiman pasar ikan, Penjaringan, Jakarta Utara. Jurnal Arsitektur Bangunan & Lingkungan, Vitruvian Vol.5 No.3 Juni 2016, Pages 105-162.
Kartika, Q. A. Y., Hidayat, R. & Virgiyanto, R. H. (2021). Perubahan temperature humadity index (THI) di Pulau Jawa sejak 1981 hingga 2019. Majalah Geografi Indonesia Vo. 35, No. 2, September 2021 (104-111).
Latif, S., Hamzah, B., Rahim, R. & Mulyadi, R. (2019). Thermal comfort identification of traditional bugis house in humid tropical climate. Tesa Arsitektur Journal of Architectural Discourses, Vol 17, No 1.
Lin, Y., Zhou, Y. & Chen, C. (2023). Interventions and practices using Comfort Theory of Kolcaba to promote adults’ comfort: an evidence and gap map protocol of international effectiveness studies. Systematic Reviews (2023), 1-10.
Lucas, P. & Gaag, L. V. D. (1991). Principles of expert systems. Centre for Mathematics and Computer Science, Amsterdam, published in 1991 by Addison-Wesley (copyright returned to the authors).
Marialena Nikolopoulou, S. L. (2006). Thermal comfort in outdoor urban spaces: Analysis across different European countries. Building and Environment,, Vol. 41, pp. 1455–1470.
Mcgregor, G. R. & Nieuwolt, S. (1998). Tropical climatology: An introduction to the climates of the low latitudes, 2 Nd Edition.
Mendea, H., Peters, A., Ibrahim, F. & Schmitta, R. H. (2022). Integrating deep learning and rule-based systems into a smart devices decision support system for visual inspection in production. ScienceDirect Elsevier f32nd CIRP Design Conference Procedia CIRP 109 (2022) 305–310.
Nadir Bonaccorso & Graça., G. C. D. (2022). Low-cost DIY thermal upgrades for overheating mitigation in slum houses in Latin America & Caribbean. Energy & Buildings, 271, 1-16.
Pratiwi, N. & Arifin, S. S. (2021). Analisis performa model eco-cooler sebagai alternatif bukaan alam. Nasional Academik Journal of Architecture Volume 8 Nomor 1,.
Schneider, G. (2019). Healthy housing environment in sustainable design. IOP Conf. Series: Materials Science and Engineering 471 (2019) 092083.
Song, J., Wang, W., Ni, P., Zheng, H., Zhou, Y. & Zhang, Y. (2022). Study on optimization method of summer nature ventilation for residential buildings in typical thermal zone of Xinjiang, China. ScienceDirect 8, 181–197.
Talarosha, B. (2005). Menciptakan kenyamanan termal dalam bangunan. Jurnal Sistem Teknik Industri Volume 6, No. 3 Juli 2005, Pages 148-158.
Wijewardanea & Jayainghe (2017). Thermal comfort temperature range for factory workers in warm humid tropical climates. Renewable Energy 33 (2008) 2057–2063, Vol. 33, Pages 2057-2063.
Zhang, J., Lu, J., Deng, W., Beccarelli, P. & Lun, I. Y. F. (2023). Thermal comfort investigation of rural houses in China: A review. Building and Environment 235 (2023).