Proceeding of International Conference on Multidisciplinary Research for Sustainable Innovation, Vol. 1 No. 1 (2024) https://doi.org/10.31098/icmrsi.v1i.808

Check for updates

Research Paper

Bearing Capacity and Settlement of Bored Pile Foundation Based on SPT Test Data and CPT Test

Prijasambada Prijasambada^{1*}, Arman Jayady^{2¹⁰}, Fitri Suryani^{3¹⁰}, Halimah Tunafiah⁴, Ricky K. Natadipura⁵, Rahman Danil⁶, Nabilah Nabilah⁷

^{1,2,3,4,5,6,7} Universitas Persada Indonesia Y.A.I, Indonesia

Received : January 13, 2024	Revised : February 23, 2024	Accepted : March 9, 2024	Online : March 13, 2024

Abstract

One form of government effort for the community is the construction of flats. In the construction of Flats X, it is necessary to conduct an analysis in order to minimize the occurrence of foundation collapse beyond the permit limit requirements. In this research analysis using axial and lateral carrying capacity. For axial carrying capacity based on NSPT values using three methods, namely Wright and Reese, Mayerhoff, Luciano Decourt. As well as on shaman power based on the CPT Test using three methods, namely Aoki de Lancer, Mayerhoff, and Schmertmann and Nottingham. For lateral carrying capacity using the calculation of the p-y curve method and using LPille software. For the descent of the foundation using Settle3D. So, obtained in this study for axial carrying capacity taken from three methods in the SPT Test is using the mayerhoff method with the results obtained, namely Q (all press) = 170 tons and Q (all pull) = 85 tons. The axial carrying capacity based on the Cpt Test is obtained from the smallest value in the three methods is the Aoki de Lancer method with the results obtained, namely Q (all press) = 83 tons and Q (all pull) = 14 tons. For lateral carrying capacity using the LPille program, a lateral load of 63.2 kN was obtained. For the number of foundation needed, namely 306 foundations. As well as for the lowering of the foundation obtained using Settle3D which is 96.3 mm.

Keywords: Bored Pile, Soil Carrying Capacity, LPille, Settle3D

INTRODUCTION

The soil serves as a support for the foundation. Soil consists of three elements: solid grains, water and air. Soil classification itself is divided into several parts, according to (Das et al., 1995 (page. 64-72)), namely: soil classification based on texture, soil classification based on the AASHTO system, soil classification based on soil unity or UUSC system. Bored pile foundation is a type of pile foundation that is paired by drilling and then filled with reinforcement and then casting. Before conducting a carrying capacity analysis, it is necessary to conduct a soil investigation. Based on National Standardization Agency (2017), things that must be considered are the type of foundation used, soil retaining structure, construction site, and depth of construction. Analysis of soil carrying capacity is the ability of the soil to withstand the weight of structures working on it without collapse due to soil shear.

Soil investigation with CPT Test is a method carried out with emphasis on obtaining parameters of soil layer penetration resistance. Meanwhile, soil investigation with SPT Test is a method carried out by erecting the stem into the ground using a hammer blow and measuring the number of blows per depth of penetration.

Based on the background above, several problem formulations are obtained as follows:

- 1. What is the bearing capacity of the bored pile foundation in the X Flats construction project based on SPT and CPT data?
- 2. How much foundation point is needed for the X Flats construction project?
- 3. How much is the value of the bored pile foundation settlement in the X Flats construction project?

Based on the existing problem formulation, several purposes and objectives of writing are obtained as follows:

- 1. Knowing the value of the bearing capacity of the bored pile foundation in the X Flats construction project based on SPT and CPT data.
- 2. Know the number of bored pile foundation points needed.
- 3. Knowing the amount of the value of the bored pile foundation reduction (Settlement) in the X Flats construction project.

LITERATURE REVIEW

In this study, the method used in calculating axial carrying capacity uses two methods, namely based on SPT Test and CPT Tests. For the SPT Test in this study, three methods were used, namely the Wright and Reese, Mayerhoff, and Luciano Decourt methods. Meanwhile, the CPT used three methods, namely the Aoki de Lancer, Mayerhoff, and Schmertmaan and Nottingham methods. For lateral carrying capacity used the p-y curve method, and input into LPille software. And for the calculation of foundation settlement from the needs of the foundation used then correlated with the soil data needed by being inputted using Settle3D software

This study aims to obtain the value of axial soil carrying capacity and lateral soil carrying capacity value in Flat X building, obtain the foundation needs needed in Flat X, and find out the value of settlement that occurs in Flat X

Axial Carrying Capacity

Axial Bearing Capacity of SPT Test

- 1. Wright and Reese Method (1977)
 - The equation used to calculate carrying capacity using the Wright and Reese method:
 - a. Cohesive Soil

 $Q_{ult=} q_p \times A_p + \alpha \times C_u \times P \times L_i$

b. Non-cohesive Soil

 $Q_{ult=} q_p \times A_p + \alpha \times C_u \times P \times L_i$

For N < 60, so $q_p = 7$ N (kN/m²) < 400 (kN/m²) For N > 60, so $q_p = 400$ (kN/m²) For N < 53, so $f_s = 0.32$ N-SPT(kN/m²) For 53 < N < 100 so fs is obtained from a direct correlation with NSPT (Reese and Wright, 1977) regarding the sliding resistance of pole covers.

Information:

 $\begin{array}{ll} Q_{P} = \mbox{ end bearing capacity (kN)} \\ q_{p} = \mbox{ End carrying capacity per unit area (kN/m^{2})} \\ A_{p} = \mbox{ Cross-sectional area of the mast (m^{2})} \\ \alpha = \mbox{ Adhesion factors (Based on Reese and Wright, 1977 for α = 0,55)} \\ C_{u} & = \mbox{ Soil cohesion (kN/m^{2})} \\ P & = \mbox{ Area of pole blanket (m^{2})} \\ L_{i} & = \mbox{ The length of the soil layer (m)} \end{array}$

Figure 1. Skin Bearing Capacity Picture

Source: Hardiyatmo, H.C. (2002)

2. Mayerhoff Method

The equation used to calculate the carrying capacity using the Mayerhoff method:

a. Cohesive Soil

 $Q_{ult} = 9 \times C_u \times A_p + X_m \times N - SPT \times p \times L$

b. Non-cohesive Soil

$$Q_{ult} = 40 \times NSPT \times A_p + X_m \times NSPT \times p \times L$$

Information:

 C_u = Soil cohesion (kN/m²) $= NSPT \times \frac{2}{3} \times 10$ A_p = Cross-sectional area of the mast (m²)NSPT= Nspt value at pole base elevation (kN/m²)L= Display soil layer (m)P= Perimeter of drill pile (m)N= The number of statistical average stroke calculations X_m = 0,2 for bored pile

Note: Limit values for 0,2 \times N is 10 Ton/m^2

3. Luciano Decourt Method

The equation used to calculate the carrying capacity using the Luciano Decourt method:

$$Q_{ult} = Ap \times Np \times K + \left(\frac{Ns}{3} + 1\right) \times As$$

Information:

Ap = Cross-sectional area of the end of the mast (m²)

Np= The average SPT value starts from 4D below the pole end to 4D above the pole end

K = The value of the soil type coefficient (12 t/m² for clay and 40 t/m² for sand) skin friction

capacity

Ns = Average value of NSPT along the pole

As = Wide blanket pole along embedded pole (m²)

Soil Type	K (t/m²)
Clay	12
Silt Clay	20
Sandy silt	25
Sand	40

F A

Source: Ismail & Ryden (2014)

Axial Bearing Capacity Based on CPT Test

a. Aoki de Lancer Method

The equation used to calculate the carrying capacity using the Aoki de Lancer method:

$$Q_U = Q_p + Q_s = q_b \cdot A_p + f \cdot A_s$$

Information:

Q_U	= The ultimate bearing capacity of drilled piles (kN)
Q_p	= End bearing capacity (kN)
Q_s	= Skin friction capacity (kN)
q_p	= The carrying capacity at the end of the unity pole is wide (kN/m^2)
A_p	= Cross-sectional area of the mast (m ²)
f	= Wide unity leather carrying capacity (kN/m ²)
A_s	= Area of pole blanket (m²)

$$Q_b = \frac{q_{ca}(base)}{F_b}$$

Information:

 $q_{ca}(base)$ = The average conus resistance of 1.5D above the end of the pole, 1.5D below the end of the pole is empirical the bearing capacity of the end depending on the type of pole.

 F_b = Empirical factors of bearing capacity of mast ends depend on pole type (Table 1) Broad unity skin resistance(f) as follows:

$$f = q_c(side) \frac{\alpha_s}{F_s}$$

Information:

 $q_c(side)$ = Average conus resistance in each layer along the pole

- α_s = The value of the empirical factor of the soil
- F_s = Empirical factor of bearing capacity of pole skin depends on pole type (Table 2)

-	-	
Piling Type	F _b	F_s
Drill Pole	3,5	7,0
Steel	1,75	3,5
Prestressed Concrete	1,75	3,5

Table 2. empiric factor F_b and F_s

Source: Aoki & Velloso (1975)

Table 3. Empirical Factors of Soil α_s

Soil Type	as (%)	Soil Type	$\alpha_s(\%)$	Soil Type	as (%)
Sand	1,4	Silted sand	2.2	Sandy loam	2,4
Silt sand	2,0	Sand with loam	2,8	Sandy loam with silt	2,8
Silt sand with loam	2,4	Silt	3,0	Silted clay with sand	3,0
Loamy sand with silt	2,8	Silt loamy with sand	3,0	Silted clay	4,0
Loamy sand	3,0	Clayey silt	3,4	Clay	6,0

Source: Aoki & Velloso (1975)

Mayerhoff Method

The equation used to calculate the carrying capacity using the Mayerhoff method:

 $Q_{ult} = q_c \times A_p + JHL \times K_I$

Information:

 Q_u = Mast bearing capacity (kN) q_c = Sondir tip resistance (kg/cm²) A_p = Cross-sectional area of the mast (m²)JHL= Number of sticky barriers (kg/cm²) K_I = Pole circumference (m)

With the safety factor of pole bearing capacity

For pure sand	SF_1	= 3,	SF_2	= 5
For claySF ₁	= 5,	SF_2	= 10	

Schmertmaan and Nottingham Method

The equation used to calculate carrying capacity using the Schmertmann & Nottingham methods:

 $Q_u = A_b \times \omega \times q_{ca} + A_s \times K_f \times qf$

Information:

Ab = Cross-sectional area of the mast (cm²)

- As = Area of pole blanket (cm²)
- Fb = Unit end resistance (kg/cm²)
- Fs = Unit friction resistance (kg/cm²)
- qca = Average conus resistance (kg/cm²)

- qc = Conus side friction resistance (kg/cm²)
- Kc = Dimensionless coefficient
- ω = correlation coefficient

To calculate the average value (qc), it is obtained from along 8D above the base of the pole to 0.7 or 4D below the pole.

Soil conditions	ω factor
Normal consolidated sand $(0CR = 1)$	1
The sand contains a lor of coarse gravel; Sand	0,67
with $OCR = 2$ to 4	
Fine gravel; sand with $OCR = 6$ to 10	0,5

Table 4. <i>ω</i> factor	(deRuiter & Beringen,	1979)
	(· · · ·

Source: Bowles (1996)

If the pole is in sand, Kf depends on the ratio of L/d (L = depth, and d = diameter of the pole). In the first 8d depth of ground level, Kf is interpolated from zero at ground level to 2.5 at 8s depth. Lower than this depth, the value of Kf decreases from 2.5 to 0.891 at a depth of 20d or is considered as a whole Kf = 0.9.

Another method, for poles in sand soil (not applicable to loam), friction units It can be determined from the QC conus prisoner: Kc = A dimensionless coefficient whose value depends on the type of pole.

- a) Bottom end steel pole open, Kc = 0.8
- b) Closed lower end pipe pole, Kc = 1,8 %
- c) Concrete pole, Kc == 1,2 %

Lateral Bearing Capacity

P-Y Curve Method

According to Hardiyatmo (2008, pp. 233-237), the p-y curve method is a method that connects lateral loads and deflections between the ground and the pole described by a curve. The p-axis represents the lateral resistance of the land of union of the length of the pole. Meanwhile, the y-axis is the lateral deflection of the pole.

The p-y method must pay attention to changes in the p-y curve with depth, can be done by finite difference analysis, which has two conditions, namely shear force and zero moment. In the lateral force analysis power of the pole, the pole is divided into two, namely the free head pole and the fixed head. To calculate lateral carrying capacity, there are several things that must be considered first are the number of poles in a group, pole spacing, pile arrangement, and reduction factors. Based on National Standardization Agency (2017) Article 9.7.3.1, the lateral deformation powder of pole permits is 12 mm for planned earthquakes and 25 mm for strong four in single pole and free head conditions.

Table 5. Comparison of p-Multiplier Values from Various Experimental and Field Studies (LPileGroup with Pile Center-to-center spacing of 3 Pile Widths)

•			-		
	Size of		Average p	-multiplier	
Author/soil type and shear strength	pile group	Lead row	Second row	Third row	Fourth row
Clay					
Present study/normally consolidated clay: undrained shear strength=0-20 kPa	2×1	0.80	0.63		
	2×2	0.96	0.78		
	3×3	0.65	0.50	0.48	
	4×4	0.65	0.49	0.42	0.46
Brown et al. (1987)/overconsolidated clay: strength=70-180 kPa	3×3	0.7	0.5	0.4	
Meimom et al. (1986)/silty clay: strength=25 kPa	2×2	0.9	0.5		
Rollins et al. (1998)/clayey silt: strength=50-75 kPa	3×3	0.6	0.4	0.4	1
Sand				$\overline{}$	-
Brown et al. (1988)/clean medium sand:	3×3	0.8	0.4	0.3	
friction angle $\phi = 38^{\circ}$					
McVay et al. (1995)/medium dense sand	3×3	0.8	0.4	0.3	
McVay et al. (1998)/medium dense sand	4×3	0.8	0.4	0.4	0.3
Ruesta and Townsend (1997)/loose find sand: $\phi = 32^{\circ}$	4 imes 4	0.8	0.7	0.3	0.3

So, the reduction factor used is 0.4, obtained based on the Cu value on the tax return, mayerhoff method.

1. Mast Efficiency

a. Converse-Methods Method

$$E_g = 1 - \left[\frac{(n-1)m + (m-1)n}{90.m.n}\right] \theta$$

b. Los Angeles Method

$$E_g = 1 - \frac{d}{\pi . s. m. n} \left[m(n-1) + (m-1) + (n-1)\sqrt{2} \right]$$

Information:

 E_a = Mast Efficiency (%)

 θ = Arc tan d/s (in degrees)

- E_a = Mast Efficiency (%)
- D = Pole diameter
- s = Distance between poles
- m = Number of poles parallel to the x-axis
- n = Number of poles parallel to the y-axis
- 2. Safety Factors

Table 6. Safety Factor Reese & O'Neill

Ctrusture alegaification	Safety Factor (F)				Safety <u>Factor</u> (F)			
Subcidie classification	Good Control	Normal Control	Bad Controls	Very Bad Controls				
Monumental	2,3	3	3,5	3,44				
Permanent	2	2,5	2,8	2,8				
while	1,4	2	2,3					

3. Settlement

Based on National Standardization Agency (2017), the decrease in permits < 15 cm + b / 600 (b with cm units) for tall buildings and proven that the upper structure is still safe. The difference in the decline that will occur and affect the building above must meet the criteria of strength and serviceability of 1/300.

Settle3D is software that functions to analyze foundation subsidence, embankments and surface loads.

Soil parameters used in Settle3D

a. Correlation of N-SPT Value to Cu Value

In general, the Cu value can be taken at 0.6N (Cu = ton/m3)

Standard Penetration Number, N60	Consistency	Unconfined compression strength, gu (kN/m²)
0-2	Very Soft	0-25
2-5	Soft	25 - 50
5-10	Medium Stiff	50 - 100
10-20	Stiff	100 - 200
20-30	Very Stiff	200 - 400
> 30	Hard	> 400

Table 7. Correlation of N-SPT with Cu Value

Source: Das et al., (1995)

Figure 2. The Relationship of Cohesion Value and NSPT on Cohesive Land Source: Terzaghi (1943)

b. Correlation of NSPT value to soil content weight (g_{sat})

Table 8. NSPT Value to Cohesive Soil Content Weight (gsat)

Cohesive Soil								
Consistency	Very Soft	Soft	Medium	Stiff	Very Stiff	Hard		
N (blows)	<2	2 - 4	4 - 8	8 - 15	15 - 30	>30		
(y)sat (kN/m3)	16 - 19	16 - 19	17 - 20	19 - 22	19 - 22	19 - 22		

Source: Terzaghi (1943)

Table 9. NSPT value to weight of non-cohesive soil content (g_{sat})

Non-cohesive Soil								
State		Very Loose	Loose	Medium	Dense	Very Dense		
Density <u>Relatif</u> (%)		0 - 15	16 - 35	36 - 65	66 - 85	86 - 100		
N (blows)		0 - 4	5 - 10	11 - 30	31 - 50	>50		
Unit Weight	Moist (<u>kN</u> /m³)	<16	15.2 - 20.0	17.6 - 20.8	17.6 - 22.4	>20.8		
	Submerged (kN/m3)	<9.6	8.8 - 10.4	9.6 - 11.2	10.4 - 13.61	>12.01		

Source: Teng et al. (1962)

c. The correlation of the N-SPT value to the value of the young modulus of soil elasticity, according to Schmertmann (1970), as follows:

1) Correlation on sand soils Es (kN/m^2) = 766× N-SPT Es =
--

2) Correlation on clay soils

a) Normally consolidated clay soils (NC) Es = 250 Cu – 500 Cu

b) Over-consolidated clay soils (OC) Es = 750 Cu – 1000 Cu

			V 1
P	Characteristic	Soil Type	Cohesive
0	Non plastic	Sand	Non cohesive
< 17	Low plasticity	Silt	Partially cohesive
7 – 17	Medium plasticity	silted clay	Cohesive
> 17	High plasticity	Clay	Cohesive

Table 10. Plasticity Index values and soil types

Source: Hardiyatmo (1996)

RESEARCH METHOD

In this study using a quantitative approach. To achieve the aims and objectives of this research, several stages were carried out, namely:

Preparation Stage

Conduct a literature study of textbooks and journal references related to the analysis of carrying capacity and settlement.

Data Collection Stage

Collect the necessary data from the Geotechnical Structure Planning. The data required is in the form of X Flats shop drawing data, SPT Test and CPT Test data, and loading data.

Data Analysis Stage

Conducting analysis of textbook literature and journal references, using three methods for calculating the carrying capacity analysis of SPT and CPT, lateral carrying capacity, the needs of the foundation to be used and settlement in Flats X.

Figure 3. Research Flowchart

FINDINGS AND DISCUSSION Technical Data

Types of structures: Bored pileNumber of Floors: 24 LantaiBore mast depth: 21 m or until it reaches hard groundBottom Structure Concrete Quality:

1.	Bore pile	: fc' 30 MPa
2	DC Tio Doom Dolot	. fa' 20 MDa

- 2. PC, Tie Beam, Pelat : fc' 30 MPa
- 3. Diameter < 10 mm : U-24, Fy 240 MPa
- 4. Diameter≥ 10 mm : U-40, Fy 420 MPa

Figure 4. Ground Research Point Plan)

Source: Geotechnical Structure Planner

Investigation of acquired land

Standar Penetration Test (SPT) : BH-1; BH-2; BH-3 Cone Penetration (CPT) : S-1; S-2; S-3; S-7; S-8; S-9; S-10; S-11

Axial Carrying Capacity Based on SPT

Metode Wright and Reese Method (1977) Based on depth 21 m

NO	Bore	Dimension	Effective	Press Carry	ring capacity (ton)	Pull Carryin	g capacity (ton)
no	hole	(cm)	length (m)	Ultimate	Permission	Ultimate	Permission
1	BD - 1	80	21	756,95	302,78	442,08	147,36
2	BD – 2	80	21	763,06	305,22	451,31	150,44
3	BD - 3	80	21	687,29	274,92	397,57	132,52
PERMIT PLANNING			270		130		

Table 11. Resume DDT (Wright and Reese)

Mayerhoff Method

Based on depth 21 m.

 Table 12. Resume DDT (Mayerhoff)

Bore		Dimension	Dimension Effective		Press Carrying capacity (ton)		Pull Carrying capacity (ton)	
NU	hole (cm) leng		length (m)	Ultimate	Permission	Ultimate	Permission	
1	BD - 1	80	21	469,68	187,87	291,97	97,32	
2	BD - 2	80	21	485,80	194,32	300,81	100,27	
3	BD - 3	80	21	431,22	172,49	262,19	87,4	
	PERMIT PLANNING			170		85		

Luciano Decourt Method

Based on depth 21 m

 Table 13. Resume DDT (Luciano Decourt)

NO	Bore	Dimension	Effective	Press Carry	ving capacity (ton)	Pull Carryin	g capacity (ton)
no	hole	(cm)	length (m)	Ultimate	Permission	Ultimate	Permission
1	BD – 1	80	21	560,04	224,01	326,96	108,99
2	BD - 2	80	21	575,57	230,23	342,39	114,13
3	BD - 3	80	21	560,65	224,26	330,65	110,22
PERMIT PLANNING			220		108		

Thus, of the three Resume methods based on BH-1. BH-2. BH-3 with a depth of 21 m, obtained are:

Colculation Mathed	Dimension	Effective	Carrying capacity (ton)		
Calculation Method	(cm)	length (m)	Press Carrying capacity	Pull Carrying capacity	
Wright & Reese	80	21	270	130	
Mayethoff	80	21	170	85	
Luciano Decourt	80	21	220	108	
PERMIT	PLANNING		170	85	

Table 14. Comparison of Carrying Capacity Based on N-SPT Value

Based on the three methods, for the calculation of the carrying capacity of N-SPT, the smallest value can be taken from the Mayerhoff method with the result that the compressive carrying capacity is 170 tons and the tensile carrying capacity is 85 tons.

Axial Carrying Capacity of CPT

Aoki de Lancer Method

Thus, the resume obtained from 8 sondir points based on the Aoki de Lancer Method, as follows:

					·
No	Sondir Point	Diameter (m)	Effective length (m)	Press Carrying capacity	Pull Carrying capacity
1	S – 1	0,8	4,7	118,81	22,00
2	S – 2	0,8	4,9	123,61	2248
3	S – 3	0,8	4,9	123,61	22,48
4	S – 7	0,8	4,7	124,07	22,76
5	S – 8	0,8	5,3	83,19	14,80
6	S – 9	0,8	4,9	103,89	19,85
7	S – 10	0,8	4,7	124,87	22,44
8	S – 11	0,8	4,9	104,42	19,81
		Permit Planning		83	14

 Table 15. Carrying Capacity (Aoke de Lancer)

Mayerhoff Method

Table 16. Carrying Capacity (Mayerhoff)

No	Sondir Point	Diameter (m)	Effective length (m)	Press Carrying capacity	Pull Carrying capacity
1	S – 1	0,8	4,7	469,12	22,32
2	S – 2	0,8	4,9	470,33	22,88
3	S – 3	0,8	4,9	482,75	28,10
4	S – 7	0,8	4,7	476,04	25,23
5	S – 8	0,8	5,3	370,24	25,95
6	S – 9	0,8	4,9	463,47	20,00
7	S – 10	0,8	4,7	456,01	16,82
8	S-11	0,8	4,9	488,25	30,41
		Permit Planning	•	370	16

	Tuble 171 Garrying Suparty (Semilertinani and Notingham)							
No	Sondir Point	Diameter (m)	Effective length (m)	Press Carrying capacity	Pull Carrying capacity			
1	S – 1	0,8	4,7	470,58	162,27			
2	S – 2	0,8	4,9	430,84	145,14			
3	S – 3	0,8	4,9	418,88	144,40			
4	S – 7	0,8	4,7	487,14	167,89			
5	S – 8	0,8	5,3	452,68	161,67			
6	S – 9	0,8	4,9	241,90	70,36			
7	S – 10	0,8	4,7	288,33	84,96			
8	S – 11	0,8	4,9	630,94	233,82			
	•	Permit Planning		240	70			

Metode Schmertmann dan Nottingham

Table 17. Carrying Capacity (Schmertmann and Nottingham)

Lateral Bearing Capacity

Based on the resume of the three SPT carrying capacity methods, the smallest value for lateral carrying capacity data input is taken, namely in the mayerhoff method located at BH-3 depth of 21 m. So, the carrying capacity obtained in the p-y curve method is;

Table 10. Dateral Dearing Capacity						
Information	Bore Hole - 3					
information	Deflection 12 mm	Deflection 25 mm				
Lateral Pile Deflection (m)	4	4,3				
Bending Momen (kN.m)	168	225				
Shear force (kN)	64	85				
Lateral Load	63,2	85				

 Table 18.
 Lateral Bearing Capacity

Based on National Standardization Agency (2017) concerning Geotechnical Planning Requirements Article 9.7.3.1. The estimated lateral capacity of the mast corresponds to the lateral deformation difference of the mast head clearance. The lateral deformation magnitude of the clearance pole is 12 mm for planned earthquakes and 25 mm for strong earthquakes in single pole and free-head conditions

yer 1, 0,00 to 3,50 m = Soft Clay	Print Sid	le Vie	
ver 2, 3,50, to 11,50, m = Stiff Clav with Free Water	□ Omit H	Omit Hatches	
ישופין איז	Inform	ation	
	Clos	se	
rer 3, 11,00 to 27,00 m = Sano (keese)			
ver 4: 27.00 to 41.00 m = Stiff Clav with Free Water			
ier 4, 21,00 to 41,00 m - our oray with the water			

Figure 5. LPile Land Data BH-3 Rusun X

Figure 8. Graphs Shear Force vs Depth

Figure 9. Graph Lateral Load vs Pile Head Deflection LPile BH-3 Rusun X

Figure 10. Diagram of the Interaction Diagram of Checking Rebar Against Moment.

In the diagram, the interaction of nominal and ultimate forces is still safe from designs that use 7D22 reinforcement.

Number of foundations based on base shear force

Sum =
$$\frac{V \text{ base shear}}{Daya \text{ dukung Lateral}} = \frac{10242}{63,2} = 163$$
 Foundation Point

Based on the calculation of the number of axial foundations, the number of foundations was obtained as many as 306 foundations. So, the number of foundations based on the base shear force against the number of axial foundations is:

306 axial foundations > 163 base shear foundations

a. Converse-Methods Method

$$\begin{split} E_g &= 1 - \left[\frac{(n-1)m + (m-1)n}{90.m.n}\right]\theta\\ \text{b. Los Angeles Method}\\ E_g &= 1 - \frac{d}{\pi.s.m.n} \left[m(n-1) + (m-1) + (n-1)\sqrt{2}\right] \end{split}$$

Type nile		Foun	dation co	Eff	Eff Los	Eff			
ca	pne	number of foundations	D (m)	m	n	S (m)	Labare	Angeles	Used
PC	1	1	0,8	1	1	2	1	1	1
PC	2	2	0,8	2	1	2	0,88	0,94	0,88
PC	3	3	0,8	2	2	2	0,76	0,85	0,76
PC	4	4	0,8	2	2	2	0,86	0,86	0,76
PC	5	5	0,8	2	3	3	0,72	0,83	0,72
PC	6	6	0,8	3	2	2	0,72	0,86	0,72
PC	7	7	0,8	4	2	2	0,70	0,87	0,70
PC	8	8	0,8	4	2	2	0,70	0,87	0,70
PC	9	9	0,8	3	3	2	0,68	0,85	0,68
PC	306	306	0,8	34	9	2	0,55	0,87	0,55

Table 19. Foundation Group Efficiency

The efficiency table is used for the calculation of the number of foundations. The number of foundations obtained is 306 foundations.

Settlement

Table 20. Correlation of NSPT Value to Soil Elasticity Modulus Value (ES)

				•	• •
Depth (m)	Soil Type	NSPT	ES (<u>kN</u> /m2)	Es NAVFAC (kN/m2)	Es used
0-4	Clay (soft)	4	8400	4800	8400
4 - 12	Stone silt (very hard)	34	71400	40800	71400
12 - 27	Sand (Very dense)	50	38300	60000	60000
27 - 41	Stone silt (very hard)	22	46200	26400	46200

Depth (m)	Soil Type	NSPT	(γ) Lab	(γ) cohesive soil	(γ) non cohesive soil	(γ) used
0-4	Clay (soft)	4	-	16 – 19	-	16
4 - 12	Stone silt (very hard)	34	-	19 – 22	-	19
12 - 27	Sand (Very dense)	50	-	-	> 20,8	21
27 - 41	Stone silt (very hard)	22	17,2	19 - 22	-	19

Table 21. Correlation of NSPT Value of Soil Fill Weight (γ)

IP	Characteristic	Soil Type	Cohesive
0	Non plastic	Sand	Non cohesive
< 17	Low plasticity	Silt	Partially cohesive
7 – 17	Medium plasticity	silted clay	Cohesive
> 17	High plasticity	Clay	Cohesive

Table 22. Plasticity Index values and soil types

Table 23. Correlation of NSPT value to cc value

Depth	Soil Type	NSPT	IP	Cc Lab	Corretation Cc	Cc Used
(m)						
0-4	Clay (soft)	4	18	-	0,374	0,374
4 - 12	Stone silt (very	34	6	-	0,134	0,134
	hard)					
12 - 27	Sand (Very dense)	50	0	-	0,014	0,014
27 - 41	Stone silt (very	22	-	0,32	-	0,032
	hard)					

Table 24. Correlation of NSPT Value to eo Value

Depth (m)	Soil Type	NSPT	<u>Eo</u> Lab	Eo used
0-4	Clay (soft)	4	-	1,10
4 - 12	Stone silt (very hard)	34	-	1,15
12 - 27	Sand (Very dense)	50	-	1,80
27 - 41	Stone silt (very hard)	22	1,193	1,193

Table 25. Data Soil Properties Settle3D

Depth (m)	Soil Type	NSPT	(γ) used	Es used	E50	Eo used	Cc Used
0 - 4	Clay (soft)	4	16	8400	0,03	1,10	0,374
4 - 12	Stone silt (very hard)	34	19	71400	0,005	1,15	0,134
12 - 27	Sand (Very dense)	50	21	60000	0,004	1,80	0,014
27 - 41	Stone silt (very hard)	22	19	46200	0,004	1,193	0,032

Figure 12. Soil Layer

Figure 13. Settle3D Results

Figure 14. The results of the decline obtained based on the BH-3 that Settle3D has output Remarks: The result of the decrease for one building of Flats X by 96.4 mm.

So, based on the results of Setlle3D the excel table is 96.4 mm. Based on National Standardization Agency (2017), settle in output yield = 96,4 mm = 9,64 cm b = Pile cap width (in cm) b = 67600 mm = 6760 cm

Settle permissions < 15 cm + b/600 = 9,64 cm < 15 cm + 6760/600 = 9,64 cm < 26,2667 cm (SAFETY)

CONCLUSIONS

From the calculation results, conclusions were obtained for the carrying capacity of axial foundations based on SPT Tests from the three Wright and Reese Methods, Mayerhoff, and Lucioano obtained the smallest value, namely in the mayerhoff in borehole-3 method is a compressive carrying capacity of 170 tons and a tensile carrying capacity of 85 tons. Meanwhile, axial carrying capacity based on CPT tests from the three methods of Aoki de Lancer, Mayerhoff, Schmertmann Nottingham obtained the smallest value in the Aoki de Lancer method located in Sondir-8 with a depth of 5.3 m of 83 tons for compressive carrying capacity and 14 tons for tensile carrying capacity. For lateral carrying capacity obtained amounted to 63.2 tons. The number of foundation needs obtained according to the calculation is 306 foundations. And for the lowering of the foundation obtained for one building is 96.4 mm.

LIMITATION & FURTHER RESEARCH

In research on the carrying capacity and lowering of bore pole foundations, complete technical data and laboratory data (test data for each depth of the soil layer) are needed in order to get accurate calculations. Research using the LPille and Settle programs is a calculation tool, so it needs to be adjusted to the conditions in the field. Flexibility in reading, testing, and calculation greatly affects the results of the calculation value. Especially pay close attention to the values of the coefficients and correlations used because they can affect the values obtained.

REFERENCES

- Aoki, N., & Velloso, D. D. A. (1975, October). An approximate method to estimate the bearing capacity of piles. In *Proc., 5th Pan-American Conf. of Soil Mechanics and Foundation Engineering* (Vol. 1, pp. 367-376). Buenos Aires: International Society of Soil Mechanics and Geotechnical Engineering.
- Bowles, J. E., & Guo, Y. (1996). *Foundation analysis and design* (Vol. 5, p. 127). New York: McGrawhill.
- Das, B. M., Shin, E. C., Shin, B. W., Lee, B. J., & Jung, K. T. (1995). Dynamic Loading Induced Settlement of Strip Foundation on Geogrid-Reinforced Clay.
- De Kuiter, J., & Beringen, F. L. (1979). Pile foundations for large North Sea structures. *Marine Georesources & Geotechnology*, *3*(3), 267-314.
- Hardiyatmo, H. C. (1996). Foundation Techniques 1. Jakart. Gramedia Main Library.
- Hardiyatmo, H. C. (2002). Soil Mechanics 1. Yogyakarta: Gajah Mada University Press.
- Hardiyatmo, H. C. (2008). Foundation Techniques 2 4th Edition. Yogyakarta: Gajah Mada University.
- Ismail, A. I. M., & Ryden, N. (2014). The quality control of engineering properties for stabilizing silty Nile Delta clay soil, Egypt. *Geotechnical and Geological Engineering*, *32*, 773-781.
- National Standardization Agency. 2017. SNI 8460:2017 Geotechnical Design Requirements. Jakarta: National Standardization Agency.
- Teng, J., He, H., Feng, X., Yan, H., & Zhang, S. (2023). a novel criterion for assessing frost heave susceptibility of soils. *Acta Geotechnica*, 1-17.
- Terzaghi, K. (1943). *Theoretical soil mechanics*.