Arteriovenous Fistula Stenosis Detection using Noninvasive Bilateral PPG Technique with SVM-OAA Algorithm

Authors

  • Alphin Stephanus Electrical Engineering Department, Ambon State Polytechnic, Indonesia, Maluku Province, Ambon

DOI:

https://doi.org/10.31098/ic-smart.v1i1.34

Keywords:

AVS stenosis, bilateral photoplethysmograph, SVM-OAA

Abstract

This paper presents a bilateral photoplethysmography (PPG) based noninvasive technique for monitoring arteriovenous fistula (AVF) stenosis. Toward effectively extract the features of PPG and classification, a real-time processing method of feature detection and support vector machines one-against-all (SVM-OAA) were used. Preliminary findings from 22 subject tests showed that the proposed approach could be provided positive predictive value = 89.0 % and sensitivity = 83.3 % estimation of AVF stenosis.

References

National Kidney Foundation, 2006. 2006 updates clinical practice guidelines and recommendations.

Vesquez, P.O., Marco, M.M. and Mandersson, B., 2009, September. Arteriovenous fistula stenosis detection using wavelets and support vector machines. In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 1298-1301). IEEE.

Wu, J.X., Lin, C.H., Du, Y.C., Chen, P.J., Shih, C.C. and Chen, T., 2015, October. Estimation of arteriovenous fistula stenosis by FPGA based Doppler flow imaging system. In 2015 IEEE International Ultrasonics Symposium (IUS) (pp. 1-4). IEEE.

Wu, J.X., Lin, C.H., Du, Y.C. and Chen, T., 2012. Sprott chaos synchronisation classifier for diabetic foot peripheral vascular occlusive disease estimation. IET Science, Measurement & Technology, 6(6), pp.533-540.

Allen, J., 2007. Photoplethysmography and its application in clinical physiological measurement. Physiological measurement, 28(3), p.R1.

Bash, S., Villablanca, J.P., Jahan, R., Duckwiler, G., Tillis, M., Kidwell, C., Saver, J. and Sayre, J., 2005. Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography. American journal of neuroradiology, 26(5), pp.1012-1021.

Tessitore, N., Bedogna, V., Gammaro, L., Lipari, G., Poli, A., Baggio, E., Firpo, M., Morana, G., Mansueto, G. and Maschio, G., 2003. Diagnostic accuracy of ultrasound dilution access blood flow measurement in detecting stenosis and predicting thrombosis in native forearm arteriovenous fistulae for hemodialysis. American journal of kidney diseases, 42(2), pp.331-341.

Wang, H.Y., Wu, C.H., Chen, C.Y. and Lin, B.S., 2014. Novel noninvasive approach for detecting arteriovenous fistula stenosis. IEEE Transactions on biomedical engineering, 61(6), pp.1851-1857.

Wu, J.X., Lin, C.H., Wu, M.J., Li, C.M., Lim, B.Y. and Du, Y.C., 2015. Bilateral photoplethysmography analysis for arteriovenous fistula dysfunction screening with fractional-order feature and cooperative game-based embedded detector. Healthcare technology letters, 2(3), pp.64-69.

Leon, C. and Asif, A., 2007. Arteriovenous access and hand pain: the distal hypoperfusion ischemic syndrome. Clinical journal of the American Society of Nephrology, 2(1), pp.175-183.

Wu, J.X., Li, C.M., Ho, Y.R., Wu, M.J., Huang, P.T. and Lin, C.H., 2015. Bilateral photoplethysmography analysis for peripheral arterial stenosis screening with a fractional-order integrator and info-gap decision-making. IEEE Sensors Journal, 16(8), pp.2691-2700.

Cortes, C. and Vapnik, V., 1995. Support-vector networks. Machine learning, 20(3), pp.273-297.

Wu, J.X., Lin, C.H., Du, Y.C., Chen, P.J., Shih, C.C. and Chen, T., 2015, October. Estimation of arteriovenous fistula stenosis by FPGA based Doppler flow imaging system. In 2015 IEEE International Ultrasonics Symposium (IUS) (pp. 1-4). IEEE.

Franc, V. and Hlavác, V., 2004. Statistical pattern recognition toolbox for Matlab. Prague, Czech: Center for Machine Perception, Czech Technical University.

Downloads

Published

2020-10-12