Description Processing Of Criminal Cases Using Latent Semantic Analysis Method

Authors

  • Hidayatulah Himawan
  • Dessyanto Boedi Prasetyo
  • Wilis Kaswidjanti

DOI:

https://doi.org/10.31098/ess.v1i1.172

Keywords:

Design, Latent Semantic Analysis, Semantic

Abstract

Identification of a criminal case requires a complete and thorough analysis. The description and sequence of events require attention that is not only seen from the side of the report, but the actual events accompanied by the evidence found. This process requires a lot of time, accuracy in analyzing requires a separate technique and method, for this reason, Latent Semantic Analysis (LSA) is used to summarize and draw conclusions about the relationship between one information and other related information. This description processing design uses similarities or semantics between words and sentences. Analyzing the relationships that are formed so that it is hoped that this design can be implemented into a system that helps the process of investigating a criminal case.

References

Akbar, A., Husodo, A. Y., Zubaidi, A., Studi, P., Informatika, T., Teknik, F., & Mataram, U. (2019). IMPLEMENTASI GOOGLE SPEECH API PADA APLIKASI KOREKSI HAFALAN AL-QUR ’ AN BERBASIS Android ( The Implementation of the Google Speech on Qur ’ an Recitation Correction, 1(1), 1–8.

Bharti, S. K., Babu, K. S., & Jena, S. K. (2017). Automatic Keyword Extraction for Text Summarization : A Survey.

Chen, B., Chang, H., & Chen, K. (2013). Sentence modeling for extractive speech summarization. IEEE International Conference on Multimedia and Expo (ICME).

Gong, Y., & Liu, X. (2001). Generic Text Summarization Using Relevance Measure and Latent Semantic Analysis. In Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 19–25). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/383952.383955

Kannan, S., & Gurusamy, V. (2014). Preprocessing Techniques for Text Mining.

Liu, S., Chen, K., Chen, B., Wang, H., & Yen, H. (2015). Positional Language Modeling for Extractive Broadcast News Speech Summarization Institute of Information Science, Academia Sinica, Taiwan National Taiwan Normal University, Taiwan, (Lm), 2729–2733.

Mani, I., Klein, G., House, D., Hirschman, L., Firmin, T., Sundheim, B., … Sundheim, B. (2012). SUMMARY : a text summarization evaluation SUMAC : a text summarization evaluation, (2002). https://doi.org/10.1017/S1351324901002741

Nada, K. T. H. (2004). Summaries and the Process of Summarization, (1997), 1–15.

Ribeiro R., de M. D. M. (2007). Extractive Summarization of Broadcast News: Comparing Strategies Title, 4629, 74628.

Rott, M., & Cerva, P. (2016). Speech-to-Text Summarization Using Automatic Phrase Extraction from Recognized Text, 101–108. https://doi.org/10.1007/978-3-319-45510-5

Savanti, N., Gotami, W., & Dewi, R. K. (2018). Peringkasan Teks Otomatis Secara Ekstraktif Pada Artikel Berita Kesehatan Berbahasa Indonesia Dengan Menggunakan Metode Latent Semantic Analysis, 2(9), 2821–2828.

Tixier, A. J., Hallowell, M. R., Rajagopalan, B., & Bowman, D. (2020). Automation in Construction Automated content analysis for construction safety : A natural language processing system to extract precursors and outcomes from unstructured injury reports. Automation in Construction, 62(2016), 45–56. https://doi.org/10.1016/j.autcon.2015.11.001

Winata, F., & Rainarli, E. (2016). IMPLEMENTASI CROSS METHOD LATENT SEMANTIC ANALYSIS UNTUK MERINGKAS DOKUMEN BERITA, 15(4), 266–277.

Downloads

Published

2020-10-27

Issue

Section

Articles