Carrying Capacity of Mercury Pollution to Rivers in the Gold Mining Area of Pancurendang Village, Banyumas

Authors

  • Johan Danu Prasetya Universitas Pembangunan Nasional Veteran Yogyakarta
  • Dian Hudawan Santoso Universitas Pembangunan Nasional Veteran Yogyakarta
  • Eni Muryani Universitas Pembangunan Nasional Veteran Yogyakarta
  • Tyka Ramadhamayanti Universitas Pembangunan Nasional Veteran Yogyakarta
  • Bandhar Aji Sukma Yudha Universitas Pembangunan Nasional Veteran Yogyakarta

DOI:

https://doi.org/10.31098/ess.v1i1.108

Keywords:

pollution load, environmental carrying capacity, gold mining, mercury pollution, rivers

Abstract

Wastewater from small-scale gold processing is causing mercury contamination in the river. It is important to know the estimation of the carrying capacity of river pollution due to mercury to support the improvement of the river ecosystem. The research objective was to calculate the load capacity of mercury pollution (Hg) in rivers around the gold mining and processing area of Pancurendang Village, Ajibarang District, Banyumas Regency, Central Java. The research begins with river discharge measurements. River discharge is measured by referring to SNI 8066: 2015. Water sampling was carried out at 12 river points with a purposive method that took into account the location (upstream, middle, downstream) and river characteristics, according to SNI 6989-78: 2008. Actual mercury levels in river water were tested at the UGM Integrated Research and Testing Laboratory (LPPT) with Mercury Analyzer. The results of the mercury and discharge levels are used to calculate the actual pollution load. The maximum pollution load is based on the quality standard of mercury in class 2 rivers, namely 0.005 ppm multiplied by river discharge. The load capacity of mercury pollution is obtained from the difference between the maximum pollution load and the actual pollution load. The results of river discharge measurements at the research location are quite varied, ranging from 0.0024-2.925 meters/second. The results of the calculation of the carrying capacity of mercury pollution loads in the river area around the gold mining and processing of Pancurendang Village show a range of 0.0000048-0.005904 kg/day with an average of 0.001325948 kg/day. The capacity of the river in Pancurendang Village has not exceeded its capacity. 

References

Aspinall, C. (2001). Small-scale mining in Indonesia. International Institute for Environment and Development and the World Business Council for Sustainable Development. England. 30 pages.

Aswadi, M. 2018. Model Pengendalian Pencemaran Merkuri Akibat Pertambangan Emas Rakyat Di Sungai Poboya Kota Palu. Disertasi. Program Studi Pengelolaan Sumberdaya Alam dan Lingkungan, IPB. Bogor.

Betancur-Corredor, B., Loaiza-Usuga, J. C., Denich, M., & Borgemeister, C. (2018). Gold mining as a potential driver of development in Colombia: Challenges and opportunities. Journal of Cleaner Production, 199, 538–553. https://doi.org/10.1016/j.jclepro.2018.07.142.

Chalkidis, A., Jampaiah, D., Aryana, A., Wood, C.D., Hartley, P.G., Sabri, Y.M., & Bhargava, S.K. (2020). Mercury-Bearing Wastes: Sources, Policies, And Treatment Technologies For Mercury Recovery And Safe Disposal. Journal of Environmental Management.

Chen, L., Li, F., Huang, W., Li, Z., &Chen, M.(2019). Evaluation of Mercury Transformation and Benthic Organisms Uptake in a Creek Sediment of Pearl River Estuary, China. Water 2019, 11, 1308; DOI:10.3390/w11061308 www.mdpi.com/journal/water.

Gulley, A. L. (2017). Valuing environmental impacts of mercury emissions from gold mining: Dollar per troy ounce estimates for twelve open-pit, small-scale, and artisanal mining sites. Resources Policy, 52(May 2016), 266–272. https://doi.org/10.1016/j.resourpol.2017.03.009.

Ismawati, Y. (2010). Presentation at the National Mercury Roundtable Forum. Jakarta, 4 August, 2010. 16 pages.

Kumari, S., Amit, Jamwal, R., Mishra, N., & Singh, D. K. (2020). Recent developments in environmental mercury bioremediation and its toxicity: A review. Environmental Nanotechnology, Monitoring, and Management, 13(November 2019), 100283. https://doi.org/10.1016/j.enmm.2020.100283.

Mahmud, M. (2012). Model Sebaran Spasial Temporal Konsentrasi Merkuri Akibat Penambangan Emas Tradisional Sebagai Dasar Monitoring Dan Evaluasi Pencemaran Di Ekosistem Sungai Tulabolo Provinsi Gorontalo. Ringkasan Disertasi. Prodi Ilmu Geografi UGM. Yogyakarta

Muryani, E., Santoso, D.H., & Rahmah, D.A. (2020). Analisis Kondisi Aktual Pencemaran Merkuri Berdasarkan Peta Kerentanan Pencemaran Air Permukaan pada Penambangan Emas Rakyat Desa Pancurendang, Kecamatan Ajibarang, Banyumas. SCIENCE TECH: Jurnal Ilmu Pengetahuan dan Teknologi. Volume : 6, No. 1, Februari 2020, hal. 33-42.

Norhadi, A., Marzuki, A., & Wicaksono, L. (2015). Studi Debit Aliran pada Sungai Antasan Kelurahan Sungai Andai Banjarmasin Utara. Jurnal Poros Teknik, Volume 7 N0. 1, Juni 2015.

Pranoto, Masykur, A., Fatimah, N., & Prabawani, S. Fabrication of Sugar Palm Fiber/Andisol Soil Composites for iron(III) ion, Removal from Aqueous Solution. (, 2018). Oriental Journal Of Chemistry, Vol. 34, No.(1): Pg. 346-351.

Pratiwi, C.A. & Ariesyady, H.D.(2012). Analisis Risiko Pencemaran Merkuri Terhadap Kesehatan Manusia yang Mengonsumsi Beras di Sekitar Kegiatan Tambang Emas Tradisional Studi Kasus: Desa Lebaksitu, Kecamatan Lebakgedong, Kabupaten Lebak, Banten. Jurnal Teknik Lingkungan, Volume 18 Nomor 2.

Putra, D.M., Sungkowo, A., & Muryani, E. (2019). Arahan Teknis Pengolahan Limbah Hasil Proses Amalgamasi untuk Menurunkan Kadar Merkuri di Desa Cihonje, Kecamatan Gumelar, Kabupaten Banyumas, Jawa Tengah. Jurnal Ilmiah Lingkungan Kebumian, Vol. 2(1): 13-23.

Rahayu, Y., Juwana, I., & Marganingrum, D. (2018). Kajian Perhitungan Beban Pencemaran Air Sungai Di Daerah Aliran Sungai (DAS) Cikapundung dari Sektor Domestik. Jurnal Rekayasa Hijau, No.1, Vol. 2 ISSN: 2550-1070, Maret 2018.

Sampe, H.R. , Juwana, I., & Marganingrum, D. (2018). Kajian Perhitungan Beban Pencemaran Sungai Cisangkuy di Cekung Bandung dari Sektor Pertanian. Jurnal Rekayasa Hijau, No.2 Vol. 2, Juli 2018. hal 165-175.

SNI 6989-78: 2008 Tentang Metode Pengambilan Contoh Air Permukaan

SNI 8066: 2015 Tentang Tata Cara Pengukuran Debit Aliran Sungai Dan Saluran Terbuka Menggunakan Alat Ukur Arus Dan Pelampung.

Subanri. (2008). Kajian Beban Pencemaran Merkuri (Hg) Terhadap Air Sungai Menyuke Dan Gangguan Kesehatan Pada Penambang Sebagai Akibat Penambangan Emas Tanpa Izin (Peti) Di Kecamatan Menyuke Kabupaten Landak Kalimantan Barat. Tesis Magister Kesehatan Lingkungan Undip. Semarang.

Sumual, H. (2009). Karakterisasi Limbah Tambang Emas Rakyat Dimembe Kabupaten Minahasa Utara Agritek, Vol. 17, No. 5, September 2009.

Veiga, M. M., & Fadina, O. (2020). A review of the failed attempts to curb mercury use at artisanal gold mines and a proposed solution. Extractive Industries and Society, April, 0–1. https://doi.org/10.1016/j.exis.2020.06.023

Veiga, M. M., Angeloci-Santos, G., & Meech, J. A. (2014). Review of barriers to reduce mercury use in artisanal gold mining. Extractive Industries and Society, 1(2), 351–361. https://doi.org/10.1016/j.exis.2014.03.004.

Veiga, M.M., Nunes, D., Klein, B., Shandro, J.A., Velasquez, P.C., &Sousa, R.N. (2009). Mill leaching: a viable substitute for mercury amalgamation in the artisanal gold mining sector? Journal of Cleaner Production 17 (2009) 1373–1381.

Verma, R.K., Sankhla, M.S., Kumar, R. (2018). Mercury Contamination in Water & Its Impact on Public Health. International Journal of Forensic Science, Volume 1, Number 2, July - December 2018.

Yan, R., Gao, Y., Li, L., &Gao, J. (2019). Estimation of water environmental capacity and pollution load reduction for urban lakeside of Lake Taihu, eastern China. Ecological Engineering, 139(September), 105587. https://doi.org/10.1016/j.ecoleng.2019.105587

Downloads

Published

2020-10-27

Issue

Section

Articles