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Abstract 
Mining-induced seismicity has become a significant concern in deep underground mining, primarily due to the 
increasing depths of extraction and the complex stress conditions. Significant seismic events are often followed by 
aftershock sequences that pose significant risks to worker safety and mine infrastructure, highlighting the 
importance of reliable aftershock identification and exclusion zone determination for re-entry protocols. The goal 
is to enhance the accuracy of aftershock identification resulting from underground mining activities and minimize 
noise in microseismic catalogs, thereby supporting mine safety. This study applies the Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) algorithm to a synthetic microseismic catalog of 1471 events with 
moment magnitudes ranging from −1.6 Mw to 2.5 Mw. After magnitude of completeness (Mc) filtering, DBSCAN 
was used to spatially cluster aftershocks, effectively distinguishing them from background seismicity and noise. 
Results show that large sequences, such as the moment magnitude event 2.5 Mw with 1,471 aftershocks, were 
reduced to 1,015 clustered events. The clustered events show a more precise spatial concentration than the 
original distribution, which makes it simpler to tell which aftershocks are related to the mainshock and which are 
not. Before clustering, the catalog had 1,471 aftershocks for each mainshock with a maximum magnitude of 2.5 
Mw. After clustering, 1,015 aftershocks were correctly identified as part of the sequence cluster. 
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INTRODUCTION 

Mining-induced seismicity has become a critical issue in deep underground mining 

operations, particularly as extraction depths continue to increase and stress conditions become 

more complex (Heal et al., 2006; Hidayat et al., 2022, 2024; Hudyma et al., 2017). At greater depths, 

the in-situ stress field approaches or exceeds the strength of the rock mass, leading to a higher 

probability of stress-driven seismic instabilities. Seismic events may be directly triggered by stress 

redistribution associated with mining activities such as blasting, caving, and hydrofracturing, or 

indirectly by slip along pre-existing faults and fractures that have been critically stressed (Cuello & 

Newcombe, 2018; Ghosh & Sivakumar, 2018). Unlike shallow mining environments where seismic 

activity is generally low in magnitude, deep-level mining introduces larger stress concentrations 

and significant rock mass deformation, increasing the frequency and size of induced seismic events. 

These events often manifest as either microseismic swarms or distinct mainshock-aftershock 

sequences. The latter are of particular concern because significant seismic events are frequently 

followed by a cascade of aftershocks that can persist for hours to days, redistributing stress and 

sometimes generating secondary rockbursts or collapse hazards (Hudyma et al., 2017; Peng & 

Zhao, 2009; Zhao et al., 2017).  

The risks posed by these aftershock sequences extend beyond immediate structural damage. 

They can interrupt production schedules, damage expensive underground infrastructure, such as 

haulage drifts and shafts, and, most critically, jeopardize the safety of workers operating within the 

confined spaces of the mine. In many mining jurisdictions, reentry to active mining areas following 
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a significant seismic event is strictly controlled through the implementation of reentry protocols, 

which require accurate assessment of both the temporal decay of aftershocks and the spatial extent 

of seismic hazards. The development of reliable methods for identifying aftershock clusters and 

quantifying exclusion zones is therefore essential for maintaining safe and sustainable deep 

underground mining operations. To mitigate these risks, reentry protocols have been developed in 

many seismically active mining operations. These protocols restrict access to affected zones for a 

prescribed duration until aftershock activity decays to acceptable levels of seismic hazard (Vallejos 

& Estay, 2018). A robust reentry protocol requires two critical parameters: the exclusion zone 

radius (R), which defines the spatial extent of the restricted area around the mainshock source, and 

the reentry time (Tmc), which specifies the minimum safe waiting period before personnel can re-

enter the area. The accuracy of these parameters directly determines the balance between 

maintaining operational efficiency and ensuring worker safety. 

Previous studies, such as those conducted by Vallejos and McKinnon (2010) and Vallejos and 

McKinnon (2008), estimated exclusion zones and reentry times using single-link clustering to 

identify aftershock sequences and empirical regression models to relate mainshock magnitude to 

seismic hazard parameters. While these approaches provided valuable first-order insights, they are 

limited by their sensitivity to noise and their inability to capture the actual density-based structure 

of aftershock clusters. Single-link methods often overestimate cluster size by chaining loosely 

related events, while regression models derived from diverse geological settings may not 

generalize well to specific mining environments. In this study, we propose an improved 

methodological framework by integrating the Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN) algorithm for aftershock identification. DBSCAN offers significant advantages 

over traditional clustering techniques because it groups events based on spatial density rather than 

distance alone, enabling the separation of physically meaningful aftershock clusters from 

background seismicity and noise (Schubert et al., 2017). By employing DBSCAN on an extensive 

microseismic catalog from an underground mine in Indonesia, this research aims to refine 

aftershock identification by enhancing clustering accuracy and mitigating noise effects, utilizing 

synthetic data as a validation approach. 

 

LITERATURE REVIEW 

 Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is one of the most 

widely used density-based clustering algorithms for identifying patterns in spatial and spatio-

temporal datasets (Gholizadeh et al., 2021; Hahsler et al., 2019). Unlike partition-based methods 

such as k-means, which require the number of clusters to be predefined, DBSCAN automatically 

determines the number of clusters based on the density distribution of data points. This property 

makes DBSCAN particularly effective for datasets where the number of clusters is unknown or 

where noise and irregular distributions are present (Arlia & Coppola, 2001; Hahsler et al., 2019; 

Schubert et al., 2017). The clustering process begins with an arbitrary point in the dataset. If the 

point is a core point, DBSCAN expands a cluster by recursively including all density-reachable 

points within its neighborhood. Border points are then attached to the nearest cluster, while noise 

points remain unclustered. This iterative process continues until all points have been evaluated. 

From a computational perspective, DBSCAN has a time complexity of O(N log N) when supported 

by spatial indexing structures, such as R-trees or KD-trees. However, in the absence of indexing, the 

complexity can degrade to O(N²) in the worst case (Kriegel et al., 2011). Despite this, DBSCAN is 

highly efficient for large datasets and has been successfully applied in geospatial analysis, anomaly 

detection, and seismological applications. However, DBSCAN also has certain limitations. The 

algorithm is sensitive to the choice of parameters (eps and minPts), and its performance can decline 

in datasets with variable density. Recent studies have therefore proposed improvements and 
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variants such as OPTICS and K-DBSCAN to address these limitations (Gholizadeh et al., 2021; 

Schubert et al., 2017). 

Given these characteristics, DBSCAN is particularly well-suited for clustering aftershock 

sequences in mining-induced seismicity studies, where events are often irregularly distributed, 

contaminated by noise, and exhibit varying density in space and time. The DBSCAN algorithm 

begins by selecting a random point from the dataset and checking whether there are other points 

located within the eps radius. If such points exist, they are added to the cluster being formed. The 

algorithm then examines each newly added point to determine whether additional points lie within 

its eps neighbourhood; if so, those points are also included in the cluster. This process is repeated 

iteratively until no further points can be added to the cluster. Once the expansion is complete, the 

algorithm continues the clustering procedure with unclustered points and repeats the process 

(Arlia & Coppola, 2001; Gholizadeh et al., 2021; Hahsler et al., 2019; Kriegel et al., 2011). In terms 

of computational efficiency, DBSCAN has a time complexity of O(N log N), where N is the number of 

data points. However, if sequential search methods are applied without spatial indexing, the 

complexity may increase to O(N²)in the worst case (Kriegel et al., 2011). 

 
Figure 1. Illustration of the DBSCAN clustering model modified from Schubert et al. (2017) 

 

RESEARCH METHOD 

Hidayat et al., (2024) conducted a local seismic tomography study in an underground mining 

environment to map the velocity structure of body waves in the vicinity of the mining zone. The 

study employed local tomography inversion on seismic data collected from an internal mine 

seismometer network to identify velocity heterogeneities and structural features that are relevant 

to rock stability and microseismic wave propagation modeling. Previously, Hidayat et al. (2022) 

developed synthetic seismic event distributions and evaluated the reliability of seismometer 

placement in underground mines. By constructing a synthetic event catalog that mimics the 

magnitude distribution and source locations of microseismic activity in mining settings, this study 

tested the performance of station placement algorithms and localization techniques. The analysis 

demonstrated how multiple factors such as tunnel orientation, source depth relative to the 

measurement surface, and variations in signal amplitude govern location accuracy and precision. 

The results provide practical guidelines for designing efficient station configurations for 

monitoring purposes, including the trade-off between the number of stations and spatial coverage, 

as well as the importance of positioning stations along dominant wave propagation paths to 

minimize localization uncertainties. 

This study employs synthetic data in the form of a microseismic catalog. The dataset was 

generated over a defined time span with a total of 1471 event. The synthetic data were designed to 

replicate real seismic conditions, following the spatial distribution of events reported in Hidayat et 

al. (2024). The most minor magnitude in the synthetic catalog is −1.6 Mw, while the largest is 2.5 

Mw. This synthetic catalog serves as the baseline for developing test scenarios that evaluate the 

performance of the DBSCAN algorithm. The use of synthetic data has two primary objectives: first, 
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to test the consistency of DBSCAN in detecting aftershocks within the complex environment of 

underground mines; and second, to assess the sensitivity of DBSCAN parameters, particularly ε and 

MinPts, to variations in spatial and temporal densities. The spatial distribution of aftershocks was 

modeled using a multivariate normal distribution with radii ranging from 50 to 500 meters around 

the synthetic mainshock epicenters. 

In comparison, depth variations were set within a range of 20 to 100 meters. The temporal 

distribution followed Omori’s law with parameters c = 0.1 days and p = 1.1, resulting in a clustering 

of events during the initial days after the mainshock and an exponential decay thereafter. 

Aftershock magnitudes were generated using the Gutenberg–Richter law with a b-value of 

approximately 1, constrained to the range −1.6 Mw to 2.5 to maintain consistency with the real 

catalog. Additionally, several small clusters containing 20 to 50 events were included, with radius 

of less than 50 meters and occurrence times of less than one hour, to simulate blasting activities 

within the mine. The first stage of the analysis involved data selection using the Magnitude of 

Completeness (Mc) to ensure that only seismic events reliably detected by the seismic monitoring 

system were included.  

The Mc value was estimated using the Maximum Curvature (MAXC) method developed by 

Wiemer and Wyss (2000), which determines Mc by identifying the maximum value of the first 

derivative of the Frequency–Magnitude Distribution (FMD) curve. For each major event, spatial 

clustering of aftershocks was performed using the Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN) algorithm. Spatial clustering was applied to ensure that only seismicity 

groups spatially associated with the mainshock were classified as part of the aftershock sequence. 

A maximum search radius of 50 meters was adopted to separate clusters, with a minimum 

threshold of 10 events required to define a valid cluster.  

 

 
Figure 2. Illustration of The Distribution of Synthetic Earthquake Events, Where Red Circles 

Represent Events With a Magnitude of 2.5 Mw.  

 

The aftershock distribution is shown by circles shaded from gray to red, indicating increasing 

magnitudes. The black line represents the haulage illustration, while the red boxes depict the 

locations of seismometer stations. 

 

FINDINGS AND DISCUSSION 

Data catalog selection using the Magnitude of Completeness (Mc) resulted in a new catalog 
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containing events with magnitudes ranging from -1.6 to 2.5 Mw. After that, aftershock clustering 

was performed for each significant event with a magnitude greater than or equal to 1.0 and an 

ES/EP ratio greater than 8.0 using the DBSCAN method, resulting in spatially clustered aftershock 

sequences. A total of 20 main events were obtained after selecting sequences that contained more 

than 50 aftershocks within 24 hours following the mainshock. The clustering parameters applied 

were a maximum search radius of 50 meters and a minimum of 10 samples to form a valid cluster. 

Figure 3 illustrates a reduction in aftershock activity and a propensity for events to aggregate 

around the mainshock. The clustered aftershocks for each main event with a maximum magnitude 

of 2.5 Mw had 1,471 aftershocks before clustering. After clustering, 1,015 aftershocks were 

included in the sequence cluster.   

This clustering result provides valuable insights for recommending that mining operations 

proceed in a more controlled and safer manner. A comparison of the number of aftershocks in each 

sequence associated with the main events, both before and after clustering with DBSCAN, is 

presented below. This comparison highlights the effectiveness of the algorithm in organizing 

seismic data, allowing for more clear identification of aftershock distribution patterns. Before 

clustering, all aftershocks were mixed in a single large dataset without separation based on spatial 

or temporal proximity. After applying DBSCAN, the data were organized into several more 

representative clusters, allowing the identification of groups of earthquakes with similar 

characteristics while separating anomalous events or noise. Thus, the comparison provides not 

only a quantitative overview of the number of earthquakes in each sequence but also demonstrates 

how the DBSCAN method enhances the clarity of the underlying seismicity structure driving 

aftershock activity.  

 

 

  

(a) (b) 

 

Figure 3. The illustration of Synthetic Earthquake Events Shows Red Circles Representing 

Earthquakes With a Magnitude of 2.5 Mw.  

 

The aftershock distribution is depicted by circles shaded from gray to red, indicating the 

corresponding magnitudes. The black line represents the haulage illustration, while the red boxes 

indicate the locations of seismometer stations. It can be observed that the distribution of 

earthquakes after the mainshock is more concentrated (figure 3b)  compared to that shown in 

Figure 3a. 
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Figure 3a illustrates the distribution of synthetic seismic events generated by a mainshock 

with a magnitude of 2.5 Mw. In contrast, Figure 3b shows the distribution of synthetic microseismic 

events clustered using the DBSCAN algorithm. Compared to the initial distribution, the clustered 

events exhibit a more compact spatial concentration, effectively delineating aftershocks associated 

with the mainshock and separating them from unrelated seismic events. Prior to clustering, the 

catalogue contained 1,471 aftershocks for each mainshock of maximum magnitude 2.5 Mw. 

Following the clustering process, 1,015 aftershocks were successfully identified as belonging to the 

sequence cluster, indicating that DBSCAN effectively reduced noise and isolated seismically 

coherent groups. The application of DBSCAN clustering to the microseismic catalogue demonstrates 

clear advantages in analyzing aftershock sequences in deep underground mining environments. 

Traditional approaches, such as single-link clustering, often overestimate cluster sizes by linking 

loosely related events, leading to inaccurate hazard characterization. 

In contrast, DBSCAN utilizes spatial density as the primary clustering criterion, allowing the 

algorithm to isolate physically meaningful aftershock groups while discarding background 

seismicity and noise. The results of this study confirm the effectiveness of DBSCAN in reducing 

catalogue complexity and improving interpretability. These reductions highlight how DBSCAN 

prevents overestimation of aftershock sequences and provides a more realistic assessment of 

seismicity directly linked to the mainshock.  

Furthermore, the analysis underscores the spatial and temporal variability of aftershock 

behavior. Some sequences displayed dense clustering within a confined zone, while others were 

characterized by broader dispersion and fewer retained events after clustering. This variability 

suggests that aftershock activity is strongly influenced by local geological structures and stress 

conditions, underscoring the importance of site-specific approaches in mining-induced seismicity 

studies. Overall, the findings demonstrate that DBSCAN offers a reliable and adaptive framework 

for identifying aftershock sequences in complex mining environments. Despite demonstrating the 

effectiveness of DBSCAN in identifying aftershocks, this study has several limitations. First, the 

analysis relies on a synthetic dataset, which may not fully capture the complexity of actual seismic 

conditions in deep underground mines. Second, the generalizability of the results from this study 

to mining-induced seismicity is limited, as geological heterogeneity and stress conditions may differ 

from those considered in the scenarios. Thirdly, the clustering results are sensitive to the selection 

of DBSCAN parameters (ε and minPts), which means careful calibration is required for operational 

applications. 

 

CONCLUSIONS  

This study employed the DBSCAN algorithm on a microseismic dataset from a deep 

underground mine in Indonesia to enhance the identification of aftershocks. The main conclusions 

are as follows: (1) DBSCAN efficiency: The algorithm effectively separates aftershock sequences 

from background seismicity and noise, reducing catalog overestimation common in conventional 

clustering methods; (2) Improved clarity of aftershock patterns: DBSCAN organizes seismic events 

into spatially meaningful groups, enhancing the visibility of aftershock structures and their relation 

to mainshocks; (3) Site-specific insights: The variability of clustering results across different 

mainshocks emphasizes the importance of tailoring aftershock analysis to local geological and 

stress conditions; (4) Contribution to seismic hazard management: By providing a more accurate 

representation of aftershock sequences, DBSCAN supports safer and more reliable assessment of 

mining-induced seismic hazards. In conclusion, DBSCAN represents a robust methodological 

improvement for aftershock clustering in mining seismology, offering both practical and scientific 

benefits for deep underground mining operations. 
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LIMITATIONS & FURTHER RESEARCH 

The variability of clustering results across different mainshocks emphasizes the importance 

of tailoring aftershock analysis to local geological and stress conditions. For future research, 

integrating temporal parameters could capture the evolution of aftershocks over time. Parameter 

optimization using adaptive or machine learning approaches would improve DBSCAN performance 

under varying geological conditions. Comparative studies with algorithms like OPTICS or K-

DBSCAN can benchmark effectiveness. Finally, translating clustering results into operational 

guidelines and exclusion zones will enhance worker safety and mine productivity. 
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