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Abstract 

Facial expression recognition (FER) underpins applications in affective computing but remains challenged by 

computational cost and the ambiguity of compound emotions. We introduce a Hybrid-Quantum Convolutional 

Neural Network (HQ-CNN) that integrates quantum principles (superposition, entanglement) into a classical CNN 

pipeline to enhance representational power and efficiency. Evaluated on the Real-World Affective Faces Database 

(RAF-DB), the HQ-CNN improves accuracy by 4.60% on basic emotions and 4.47% on compound emotions, while 

reducing computation time by up to 22.11% and 6.20%, respectively, relative to a VGG16 baseline. Confusion-matrix 

analysis shows fewer misclassifications on challenging compound categories, indicating better separation of 

overlapping affective cues. These results support the use of quantum-enhanced architectures as a viable path 

toward robust, real-time FER systems. 
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INTRODUCTION 

Facial expression recognition (FER) is a vital component of affective computing, with 

applications in mental health monitoring, security, human-computer interaction, and social 

robotics. (Florestiyanto et al., 2024; Hassan et al., 2021; Zhao et al., 2022). As the integration of 

technology into human-centric applications increases, the demand for FER systems that accurately 

identify both basic and compound emotional states has grown (Mengoni et al., 2021). Convolutional 

Neural Networks (CNNs), especially VGG16, have become the preferred approach to FER due to 

their capability to capture intricate spatial hierarchies in facial expressions (Wei et al., 2022). 

However, CNNs like VGG16 face challenges in processing large datasets (Tran & Liu, 2021) and 

distinguishing subtle nuances in complex emotions, which can lead to misclassifications 

(Kheirandish et al., 2021; Wang & Hu, 2021). 

To address these limitations, researchers are exploring the integration of quantum 

computing into CNN architectures (Henderson et al., 2020). Quantum principles such as 

superposition and entanglement present opportunities to reduce computational complexity and 

enhance feature extraction (Kumbhakar et al., 2021). Hybrid-Quantum CNN models combine the 

strengths of traditional CNNs with the efficiencies of quantum circuits (Mengoni et al., 2021), which 

are particularly advantageous for recognising compound emotions that involve subtle emotional 

distinctions (Rengasamy et al., 2024). 

This study proposes a Hybrid-Quantum CNN and compares its performance with the 
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established VGG16 model using the Real-World Affective Faces Database (RAF-DB) (Li et al., 2017). 

By evaluating various hyperparameter settings and employing confusion matrix analysis, the 

research aims to assess the impact of quantum computing in improving both accuracy and 

computational efficiency in FER tasks. The findings aim to contribute to the understanding of 

quantum machine learning's potential in facial emotion recognition, ultimately advancing the 

development of real-time emotion recognition systems in the field of affective computing. 

 

LITERATURE REVIEW 

 Facial expression recognition (FER) “in the wild” remains difficult due to pose, illumination, 

occlusion, and the ambiguity of compound emotions. The Real-World Affective Faces Database 

(RAF-DB) is a widely used benchmark addressing these issues: ~30,000 images annotated by 

around 40 crowd workers per image, with both basic and compound categories, enabling rigorous 

evaluation under real-world variability (Li & Deng, 2019). This design exposes label noise and 

overlapping affective cues, motivating methods that better separate subtly mixed expressions. In 

that context, VGG16 remains a transparent and reproducible baseline for FER studies and is often 

retained to contextualise newer architectures. Recent surveys further highlight RAF-DB’s central 

role and the need for models that handle label ambiguity and class imbalance (Li & Deng, 2019; 

Sajjad et al., 2023).  

 Beyond canonical CNNs, contemporary FER increasingly exploits attention and 

Transformer designs to fuse local and global cues, as well as long-range dependencies, on RAF-DB 

and related datasets. Vision-Transformer-based models (e.g., self-supervised or hybrid local-

attention variants) report gains by combining fine-grained facial regions with global context, 

underscoring the importance of representational bias rather than depth alone (Chen et al., 2023; 

Tian et al., 2024). Parallel work specifically addresses compound emotions through soft/label-

distribution learning and joint recognition of basic and compound categories, thereby improving 

robustness to label ambiguity and cross-class overlap (Jiang et al., 2024). These trends justify using 

VGG16 as a canonical reference while acknowledging the stronger contemporary baselines that 

anchor today’s FER literature.  

 In parallel, quantum–classical hybrids have emerged as a complementary approach to 

compact and expressive feature mappings. The Quantum Convolutional Neural Network (QCNN) 

exhibits hierarchical circuits with favorable parameter scaling (𝚶(𝐥𝐨𝐠𝑵) variational parameters 

for 𝑵 qubits), indicating efficient trainability on near-term devices (Cong et al., 2019). Crucially, the 

parameter-shift rule yields analytic gradients for variational circuits, enabling end-to-end 

differentiable training of hybrid models (Schuld et al., 2019). Recent journal work on quantum data 

encodings (including amplitude encoding and its efficient/approximate realizations) clarifies 

practical trade-offs among qubit count, circuit depth, and fidelity on noisy hardware (Daimon & 

Matsushita, 2024; Mitsuda et al., 2024; Rath & Date, 2024). Positioned within this literature, our 

Hybrid-Quantum CNN (HQ-CNN) amplitude-encodes low-resolution grayscale inputs into an 

entangling circuit, fuses quantum measurements with a lightweight classical branch, and 

benchmarks against VGG16 on RAF-DB to test whether quantum-derived embeddings sharpen 

class boundaries, particularly for compound emotions.  

 

RESEARCH METHOD 

This section details the preprocessing pipeline, architecture design, training strategies, and 

comparative models used in this study. Our objective is to benchmark the proposed Hybrid 

Quantum-Classical CNN (HQ-CNN) against well-established deep learning baselines using the 

compound emotion subset of the RAF-DB dataset. 
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1. Comparative Deep Learning Baselines  

The selection of baseline models in this study was guided by relevance and fairness in facial 

expression recognition (FER). VGG16 was chosen as a canonical convolutional architecture that 

remains widely used in FER literature, providing a historical benchmark. To ensure a fair 

comparison, we used ImageNet-pretrained weights and trained the model on 224×224 RGB 

images with appropriate augmentation. A grayscale, down-sampled variant (VGG16-Tiny) was 

also included to control for input-resolution effects relative to our hybrid model. 

Our proposed HQ-CNN offers a lightweight hybrid design that integrates quantum feature 

extraction into a classical CNN pipeline using low-dimensional (16×16 grayscale) inputs. By 

contrasting HQ-CNN with both VGG16 (full resolution) and VGG16-Tiny (matched resolution), 

we disentangle the influence of input resolution from the contribution of the quantum branch, 

allowing for a fair and controlled assessment of compound emotion classification. 

2. Data Collection and Preprocessing   

The study utilises the Real-World Affective Faces Database (RAF-DB) (Li et al., 2017), which 

comprises two subsets: Basic (5,755 images across seven emotions—anger, disgust, fear, 

happiness, neutral, sadness, and surprise) and Compound (1,485 images across nine compound 

classes). Together, they provide a solid basis for analyzing both fundamental and nuanced facial 

emotions. 

All images were re-labelled into class folders. For HQ-CNN, images were converted to 

grayscale, resized to 16×16, normalized to [0, 1], and flattened for amplitude embedding. For 

the VGG16 baseline, images were resized to 224×224 RGB and processed using the standard 

function. Training utilized data augmentation (random flips, 20° rotations, affine shear, and 

brightness/contrast jitter), along with a stratified split of the training (64%), validation (16%), 

and test (20%) sets. A summary table of the preprocessing steps is provided below: 

 

Table 1. Data Preprocessing Overview 

Model 
Image 

Size 

Colour 

Space 

Normalisation / 

Scaling 

Augmentation 

Applied 
Notes 

HQ-CNN 16 × 16 Grayscale 
Pixel values 

scaled to [0, 1] 

Yes (flip, crop, 

contrast, affine, 

shear) 

Input is flattened 

and amplitude-

encoded for the 

quantum feature 

map 

VGG16 
224 × 

224 
RGB 

Using 

preprocess_input 

from Keras 

Yes (same 

augmenters as 

HQ-CNN) 

Features 

extracted using 

frozen 

convolutional 

layers 

 

3. Hybrid Quantum–Classical CNN (HQ-CNN)   

HQ-CNN integrates a shallow classical CNN with a quantum feature branch to combine 

efficient classical processing with quantum-derived representations. The pipeline is illustrated 

in Figure 1. 
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Figure 1. HQ-CNN architecture. A 16×16 grayscale image feeds two branches: (i) a classical 

pathway (Flatten → Dense(1024) → Dropout(0.5) → Dense(512) → Dropout(0.3) → 𝒉𝒄); and (ii) 

a quantum pathway that normalises the flattened vector, performs amplitude embedding into 8 

qubits, applies fixed RX(π/3) rotations with linear CNOT entanglement, and measures Pauli-Z 

expectations to produce an 8-D vector projected by Dense(512) to 𝒉𝒒
′ . The features are 

concatenated and fed to a softmax classifier. 

a. Classical branch 

16×16 grayscale inputs are flattened and passed to two fully connected layers (1024, 512; 

ReLU) with Dropout (0.5, 0.3). This lightweight pathway provides a compact, nonlinear 

embedding of the image. 

 

b. Quantum feature extraction 

Flattened, normalized 256-D vectors are amplitude-encoded into 8 qubits. Each qubit 

receives a fixed RX(π/3) rotation; linear entanglement is introduced via chained CNOTs. 

Expectation values of Pauli-Z on all qubits yield an 8-D quantum feature vector, which is 

projected with a Dense(512) layer and concatenated with the classical features before the 

final softmax. 

 

c. Training 

Quantum features for train/validation/test are precomputed. The hybrid model uses Adam 

(learning rate = 1e-4), 100 epochs, batch size = 64, and validation accuracy monitoring; 

labels are one-hot encoded. Although quantum simulation is offline, the pipeline supports 

end-to-end differentiability via PennyLane’s parameter-shift rule (e.g., with TorchLayer) if 

integrated during training. 

 

4. VGG16 

A comprehensive transfer learning pipeline was established utilizing the VGG16 

architecture, which was pretrained on the extensive ImageNet dataset, deliberately excluding 

the top classification layers. To ensure consistency in input dimensions, all images were 

meticulously resized to a standard 224×224 pixels in RGB format. The convolutional base of the 

VGG16 model was intentionally frozen during the training process, allowing for the extraction 

of rich and relevant features from the images, which were then flattened for further processing. 

The classifier architecture was thoughtfully designed to enhance performance and mitigate 
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overfitting, incorporating the following layers: 

a. A Dense layer with 1024 neurons, followed by a Dropout layer with a drop rate of 0.5 to 

promote regularization 

b. A subsequent Dense layer with 512 neurons, again accompanied by a Dropout layer, this 

time set to 0.3 

The output was produced by a softmax layer, facilitating multi-class classification. Training 

was conducted over 100 epochs using the Adam optimizer, configured with a learning rate of 

0.0001 and a batch size of 64. Before the training of the classifier, the relevant features were 

meticulously extracted from the frozen convolutional base, thereby setting the stage for 

practical model training and performance evaluation. 

 

5. Evaluation Protocol 

All models were evaluated on the same test set to ensure consistency and comparability in 

performance assessments. The evaluation metrics included several key indicators: accuracy, 

precision, recall, and F1-score, both in macro and weighted forms. Additionally, per-class 

accuracy was calculated to understand how well the models performed on each class. At the 

same time, the confusion matrix provided a detailed breakdown of the predictions, highlighting 

true positives, false positives, and false negatives. 

To gain insights into the computational costs associated with the HQ-CNN model 

specifically, training time, quantum feature engineering time, and prediction time were also 

meticulously recorded. This comprehensive approach not only enables a robust evaluation of 

model performance but also facilitates an understanding of the models' efficiency and 

scalability in practical applications. 

 

FINDINGS AND DISCUSSION 

This section reports the experimental evaluation of the Hybrid-Quantum CNN (HQ-CNN) 

against VGG16 on the RAF-DB Basic and Compound subsets. We assess classification accuracy, 

computational time, and error patterns via confusion matrices and classification reports, while 

testing robustness by varying epochs, learning rates, and batch sizes. Overall, the quantum-

enhanced model demonstrates measurable gains in accuracy and efficiency, and it better captures 

nuanced expressions. 

 

1. The Experimental Results 

Table 2 summarises results across hyperparameter settings for both subsets: each row lists 

(epochs, learning rate, batch size), and columns report each model’s accuracy and runtime. The 

table reveals sensitivity trends and the relative advantages of HQ-CNN over VGG16. 

 

Table 2. Performance Comparison 

No 

Subset of 

the 

Dataset 

Epoch 
Learning 

Rate 

Batch 

Size 

Accuracy 

of 

VGG16 

Accuracy 

of 

Hybrid-

Quantum 

Time 

Model 

VGG16 

Time 

Model 

Hybrid-

Quantum 

1 

Basic 

70 0,001 16 23.78% 38.87% 150.05 s 113.3 s 

2 70 0,001 64 41.69% 45.06% 93.58 s 74.42 s 

3 70 0,0001 16 47.23% 49.62% 168.20 s 114.96 s 

4 70 0,0001 64 45.82% 47.01% 95.69 s 74.14 s 

5 100 0,001 16 29.97% 39.74% 201.08 s 143.94 s 
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No 

Subset of 

the 

Dataset 

Epoch 
Learning 

Rate 

Batch 

Size 

Accuracy 

of 

VGG16 

Accuracy 

of 

Hybrid-

Quantum 

Time 

Model 

VGG16 

Time 

Model 

Hybrid-

Quantum 

6 100 0,001 64 39.52% 46.25% 102.68 s 81.85 s 

7 100 0,0001 16 48.43% 49.73% 212.27 s 138.76 s 

8 100 0,0001 64 44.73% 45.39% 110.21 s 82.01 s 

9 

Compound 

70 0,001 16 17.65% 31.09% 45.86 s 39.50 s 

10 70 0,001 64 26.05% 31.09% 40.44 s 26.48 s 

11 70 0,0001 16 34.45% 31.93% 60.81 s 36.37 s 

12 70 0,0001 64 26.89% 28.99% 44.23 s 25.50 s 

13 100 0,001 16 18.49% 32.35% 60.69 s 44.31 s 

14 100 0,001 64 21.01% 31.51% 33.32 s 28.51 s 

15 100 0,0001 16 30.67% 32.35% 68.15 s 44.30 s 

16 100 0,0001 64 30.25% 32.35% 43.28 s 28.92 s 

 

  

Figure 2a. VGG16 vs QCNN Accuracy 

Performance 

Figure 2b. VGG16 vs QCNN Computational 

Performance. 

 

The experimental results demonstrate significant performance differences between the 

VGG16 and Hybrid-Quantum CNN (QCNN) models on both the Basic and Compound subsets. For 

instance, with a configuration of 70 epochs, a learning rate of 0.001, and a batch size of 16, the 

Hybrid-Quantum CNN achieved an accuracy of 38.87% on the Basic subset, outperforming 

VGG16's 23.78% by approximately 15 percentage points. Similarly, in the Compound subset, the 

Hybrid-Quantum model reached 31.09% accuracy, compared to VGG16's 17.65%, indicating 

gains of about 13–14%.  

While increasing the number of epochs generally led to longer computation times for both 

models, the accuracy improvements were not always proportional to the increase in epochs 

(Figure 2). Lower learning rates (0.0001) improved training stability and accuracy, and smaller 

batch sizes (16) slightly enhanced accuracy but increased training duration. Overall, the Hybrid-

Quantum CNN consistently surpassed VGG16 in accuracy and computational efficiency, 

particularly in recognising complex compound emotions. The accompanying accuracy and 

computational time graph further reinforces these findings, showcasing the Hybrid-Quantum 

approach's potential for real-time facial emotion recognition. 
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2. The Comparison of the Confusion Matrix 

The confusion matrix (Figures 3 and 4) shows the performance of the VGG16 model and 

the Hybrid-Quantum CNN (QCNN) on the basic expressions subset and compound facial 

expressions. Each row represents the actual emotion, while each column shows the predicted 

emotion. Comparing these matrices reveals the accuracy and misclassification patterns of each 

model in interpreting facial expressions. 

 

 

Figure 3. Confusion Matrix of VGG16 and Hybrid-Quantum CNN on The Basic Expressions 

Subset 

 

 

Figure 4. Confusion Matrix of VGG16 and Hybrid-Quantum CNN on The Compound 

Expressions Subset 

 

a. Basic Subset  

HQ-CNN reduces key confusions and increases true positives for Anger (102 vs. 99), 

Happiness (119 vs. 101), and Surprise (109 vs. 98), with comparable results for Fear 

(25 vs. 25), but a cleaner error profile. Disgust shows fewer spillovers into Sadness 
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despite a slight drop in corrects, while Neutral improves modestly. The principal 

regression is Sadness (94 vs 114 for VGG16), indicating class-specific tuning needs. 

b. Compound Subset 

HQ-CNN improves several overlap-heavy classes (“Happily Surprised” (17 vs 14), 

“Angrily Disgusted” (7 vs 5), and “Fearfully Surprised” (15 vs 9)) and slightly betters 

“Sadly Fearful” (3 vs 2) with a more balanced error spread. “Sadly Angry” remains a 

VGG16 strength. Overall, HQ-CNN sharpens boundaries in surprise-involving and 

nuanced categories, while targeted refinements are needed for specific negative blends. 

 

3. The Classification Report Comparison 

Figures 5 and 6 compare precision, recall, and F1 scores for each emotion class on the basic 

expressions subset. This graph succinctly highlights the strengths and weaknesses of VGG16 

and the Hybrid-Quantum CNN, making it clear where quantum enhancements yield 

improvements and where traditional methods still excel. 

 

 

Figure 5. The Classification Report Comparison for Basic Expressions Subset 

 

Figure 6. The Classification Report Comparison for Compound Expressions Subset 
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a. Basic Subset 

VGG16 and HQ-CNN perform similarly on Anger and Disgust; VGG16 is stronger on Fear 

(notably higher precision), while HQ-CNN improves Happiness, Neutral, and Surprise 

via higher recall and net F1 gains. Sadness is effectively a tie (precision–recall trade-off 

yields near-equal F1). 

b. Compound Subset  

HQ-CNN shows more evident advantages in “Fearfully Surprised” and “Angrily 

Surprised” (higher F1), offers balanced precision–recall on “Happily Surprised” (vs 

VGG16’s high-precision/low-recall), and is comparable on “Happily Disgusted” and 

“Angrily Disgusted”. Both models struggle with “Sadly Fearful” (HQ-CNN performs 

modestly better), while “Sadly Angry” remains a weakness for HQ-CNN (VGG16 

achieves a higher F1). 

 

4. Discussion 

This study compares a traditional VGG16 baseline with a Hybrid-Quantum CNN (QCNN) on 

RAF-DB (Basic and Compound subsets). Across metrics (accuracy, runtime, and error profiles), 

QCNN consistently outperforms VGG16. On the Basic subset, it achieves higher accuracy while 

reducing computation time by more than 20%. On the Compound subset, under 70 epochs, 

learning rate = 0.001, batch = 16, QCNN achieves 31.09% accuracy versus 17.65% for VGG16, 

with more apparent separation in difficult classes (e.g., “Fearfully Surprised”, “Angrily 

Surprised”). 

Performance gains are not uniform: VGG16 is stronger for Fear in Basic, and QCNN 

underperforms on “Sadly Angry”. Both models are sensitive to hyperparameters; lower 

learning rates and smaller batches improve accuracy but increase training time. Overall, 

quantum-enhanced feature mapping yields robust improvements, particularly for compound 

emotions, suggesting QCNN as a promising and resource-conscious option. Future work will 

focus on circuit optimisation and integrating attention or multi-scale features to address 

remaining class-specific weaknesses. 

 

CONCLUSIONS  

 This study demonstrates that integrating quantum computing principles into convolutional 

neural networks can significantly enhance facial emotion recognition performance. The Hybrid-

Quantum CNN achieved higher accuracy, especially for complex compound expressions, and 

reduced computational time compared to the traditional VGG16 model. Notably, improvements in 

capturing nuanced expressions such as Fearfully Surprised and Angrily Surprised underscore the 

potential of quantum-enhanced architectures in addressing the inherent challenges of FER. 

However, specific categories, such as Sadly Angry, still pose significant challenges, suggesting 

that further refinements are needed. Future research should optimise quantum circuits, integrate 

advanced feature extraction techniques (e.g., attention mechanisms and multi-scale processing), 

and expand the dataset to include more diverse and balanced samples. These directions will help 

bridge the remaining gaps and pave the way for robust, real-time emotion recognition systems in 

practical applications. Overall, the findings provide a strong foundation for the continued 

exploration of quantum-enhanced deep learning in affective computing, with promising 

implications for improving accuracy and efficiency in facial emotion recognition. 

 

LIMITATIONS & FURTHER RESEARCH 

Limitations 

This study has several constraints:  
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1. The comparative scope is narrow: results are reported against VGG16 (and a resolution-

matched VGG16-Tiny control), without stronger modern baselines (e.g., ResNet, 

EfficientNet, or transformer models), which limits external validity 

2. There is an input-modality mismatch between models: HQ-CNN operates on 16×16 

grayscale, while VGG16 uses 224×224 RGB; although VGG16-Tiny helps control for 

resolution, residual modality effects may remain 

3. The absolute accuracies—particularly on compound emotions—remain modest for 

deployment-grade systems, indicating headroom for methodological improvement 

4. Reported scores are based on single-run training without multi-seed repeats, dispersion 

(mean ± SD), or statistical significance testing, so robustness under re-runs is 

undetermined.  

5. The quantum branch is evaluated via offline simulation with precomputed quantum 

features; fully end-to-end differentiable training through the circuit and execution on real 

hardware are not demonstrated.  

6. Runtime accounting may be confounded if quantum feature extraction is not included 

uniformly in wall-clock comparisons.  

7. The evaluation is single-dataset (RAF-DB), whose compound subset is relatively small and 

imbalanced, and class-specific weaknesses persist (e.g., certain negative/overlapping 

emotions), suggesting sensitivity to label ambiguity and skew.  

8. The hyperparameter search is limited, and reproducibility could be strengthened with 

fuller reporting of software/hardware environments. 

 

Future Work  

We see four priority directions, as presented below:  

1. Broaden baselines and controls: include ResNet/EfficientNet and transformer models; 

maintain strictly resolution- and modality-matched classical controls to isolate quantum 

effects.  

2. Strengthen experimental rigour: train with ≥ 5 random seeds, report mean ± SD and paired 

significance tests (e.g., Wilcoxon); expand the search over optimizers, learning-rate 

schedules, batch sizes, and regularization.  

3. Advance the hybrid pipeline: enable end-to-end training via parameter-shift gradients (e.g., 

PennyLane TorchLayer), study convergence/gradient variance, and benchmark on noisy 

intermediate-scale hardware to assess practicality; report fair efficiency metrics (end-to-

end wall clock including preprocessing) plus FLOPs/parameter counts.  

4. Improve modelling and evaluation: explore richer quantum ansätze (deeper layers, 

alternative entanglement topologies, learnable encodings), attention/multi-scale modules, 

and ablations to attribute gains; extend to additional FER datasets and apply imbalance-

aware learning (class weights, focal loss, calibrated thresholds), emphasizing macro-F1 and 

per-class analyses. To facilitate reuse and verification, future releases should include code, 

circuit diagrams, training scripts, and environment specs, alongside a lightweight inference 

demo for real-time feasibility. 
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