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Abstract

Facial expression recognition (FER) underpins applications in affective computing but remains challenged by
computational cost and the ambiguity of compound emotions. We introduce a Hybrid-Quantum Convolutional
Neural Network (HQ-CNN) that integrates quantum principles (superposition, entanglement) into a classical CNN
pipeline to enhance representational power and efficiency. Evaluated on the Real-World Affective Faces Database
(RAF-DB), the HQ-CNN improves accuracy by 4.60% on basic emotions and 4.47% on compound emotions, while
reducing computation time by up to 22.11% and 6.20%, respectively, relative to a VGG16 baseline. Confusion-matrix
analysis shows fewer misclassifications on challenging compound categories, indicating better separation of
overlapping affective cues. These results support the use of quantum-enhanced architectures as a viable path
toward robust, real-time FER systems.

Keywords Facial Expression Recognition, Quantum Machine Learning, Hybrid-Quantum CNN, VGG16, RAF-DB,
Compound Emotions

INTRODUCTION

Facial expression recognition (FER) is a vital component of affective computing, with
applications in mental health monitoring, security, human-computer interaction, and social
robotics. (Florestiyanto et al., 2024; Hassan et al., 2021; Zhao et al,, 2022). As the integration of
technology into human-centric applications increases, the demand for FER systems that accurately
identify both basic and compound emotional states has grown (Mengoni et al., 2021). Convolutional
Neural Networks (CNNs), especially VGG16, have become the preferred approach to FER due to
their capability to capture intricate spatial hierarchies in facial expressions (Wei et al., 2022).
However, CNNs like VGG16 face challenges in processing large datasets (Tran & Liu, 2021) and
distinguishing subtle nuances in complex emotions, which can lead to misclassifications
(Kheirandish et al., 2021; Wang & Hu, 2021).

To address these limitations, researchers are exploring the integration of quantum
computing into CNN architectures (Henderson et al, 2020). Quantum principles such as
superposition and entanglement present opportunities to reduce computational complexity and
enhance feature extraction (Kumbhakar et al., 2021). Hybrid-Quantum CNN models combine the
strengths of traditional CNNs with the efficiencies of quantum circuits (Mengoni et al., 2021), which
are particularly advantageous for recognising compound emotions that involve subtle emotional
distinctions (Rengasamy et al., 2024).

This study proposes a Hybrid-Quantum CNN and compares its performance with the
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established VGG16 model using the Real-World Affective Faces Database (RAF-DB) (Lietal.,, 2017).
By evaluating various hyperparameter settings and employing confusion matrix analysis, the
research aims to assess the impact of quantum computing in improving both accuracy and
computational efficiency in FER tasks. The findings aim to contribute to the understanding of
quantum machine learning's potential in facial emotion recognition, ultimately advancing the
development of real-time emotion recognition systems in the field of affective computing.

LITERATURE REVIEW

Facial expression recognition (FER) “in the wild” remains difficult due to pose, illumination,
occlusion, and the ambiguity of compound emotions. The Real-World Affective Faces Database
(RAF-DB) is a widely used benchmark addressing these issues: ~30,000 images annotated by
around 40 crowd workers per image, with both basic and compound categories, enabling rigorous
evaluation under real-world variability (Li & Deng, 2019). This design exposes label noise and
overlapping affective cues, motivating methods that better separate subtly mixed expressions. In
that context, VGG16 remains a transparent and reproducible baseline for FER studies and is often
retained to contextualise newer architectures. Recent surveys further highlight RAF-DB’s central
role and the need for models that handle label ambiguity and class imbalance (Li & Deng, 2019;
Sajjad et al., 2023).

Beyond canonical CNNs, contemporary FER increasingly exploits attention and
Transformer designs to fuse local and global cues, as well as long-range dependencies, on RAF-DB
and related datasets. Vision-Transformer-based models (e.g. self-supervised or hybrid local-
attention variants) report gains by combining fine-grained facial regions with global context,
underscoring the importance of representational bias rather than depth alone (Chen et al,, 2023;
Tian et al., 2024). Parallel work specifically addresses compound emotions through soft/label-
distribution learning and joint recognition of basic and compound categories, thereby improving
robustness to label ambiguity and cross-class overlap (Jiang et al., 2024). These trends justify using
VGG16 as a canonical reference while acknowledging the stronger contemporary baselines that
anchor today’s FER literature.

In parallel, quantum-classical hybrids have emerged as a complementary approach to
compact and expressive feature mappings. The Quantum Convolutional Neural Network (QCNN)
exhibits hierarchical circuits with favorable parameter scaling (O(log N) variational parameters
for N qubits), indicating efficient trainability on near-term devices (Cong et al., 2019). Crucially, the
parameter-shift rule yields analytic gradients for variational circuits, enabling end-to-end
differentiable training of hybrid models (Schuld et al., 2019). Recent journal work on quantum data
encodings (including amplitude encoding and its efficient/approximate realizations) clarifies
practical trade-offs among qubit count, circuit depth, and fidelity on noisy hardware (Daimon &
Matsushita, 2024; Mitsuda et al., 2024; Rath & Date, 2024). Positioned within this literature, our
Hybrid-Quantum CNN (HQ-CNN) amplitude-encodes low-resolution grayscale inputs into an
entangling circuit, fuses quantum measurements with a lightweight classical branch, and
benchmarks against VGG16 on RAF-DB to test whether quantum-derived embeddings sharpen
class boundaries, particularly for compound emotions.

RESEARCH METHOD

This section details the preprocessing pipeline, architecture design, training strategies, and
comparative models used in this study. Our objective is to benchmark the proposed Hybrid
Quantum-Classical CNN (HQ-CNN) against well-established deep learning baselines using the
compound emotion subset of the RAF-DB dataset.
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1. Comparative Deep Learning Baselines

The selection of baseline models in this study was guided by relevance and fairness in facial
expression recognition (FER). VGG16 was chosen as a canonical convolutional architecture that
remains widely used in FER literature, providing a historical benchmark. To ensure a fair
comparison, we used ImageNet-pretrained weights and trained the model on 224x224 RGB
images with appropriate augmentation. A grayscale, down-sampled variant (VGG16-Tiny) was
also included to control for input-resolution effects relative to our hybrid model.

Our proposed HQ-CNN offers a lightweight hybrid design that integrates quantum feature
extraction into a classical CNN pipeline using low-dimensional (16x16 grayscale) inputs. By
contrasting HQ-CNN with both VGG16 (full resolution) and VGG16-Tiny (matched resolution),
we disentangle the influence of input resolution from the contribution of the quantum branch,
allowing for a fair and controlled assessment of compound emotion classification.

2. Data Collection and Preprocessing

The study utilises the Real-World Affective Faces Database (RAF-DB) (Li et al., 2017), which
comprises two subsets: Basic (5,755 images across seven emotions—anger, disgust, fear,
happiness, neutral, sadness, and surprise) and Compound (1,485 images across nine compound
classes). Together, they provide a solid basis for analyzing both fundamental and nuanced facial
emotions.

All images were re-labelled into class folders. For HQ-CNN, images were converted to
grayscale, resized to 16x16, normalized to [0, 1], and flattened for amplitude embedding. For
the VGG16 baseline, images were resized to 224x224 RGB and processed using the standard
function. Training utilized data augmentation (random flips, 20° rotations, affine shear, and
brightness/contrast jitter), along with a stratified split of the training (64%), validation (16%),
and test (20%) sets. A summary table of the preprocessing steps is provided below:

Table 1. Data Preprocessing Overview

Image Colour Normalisation/ Augmentation

Model Not
ode Size Space Scaling Applied otes
Input is flattened
i Yes (flip, crop, and amplitude-
Pixel val
HQ-CNN 16 x 16  Grayscale 1xet vaiues contrast, affine, encoded for the
scaled to [0, 1]
shear) quantum feature
map
Features
Using Yes (same extracted using
224 x .
VGG16 994 RGB preprocess_input  augmenters as frozen
from Keras HQ-CNN) convolutional
layers

3. Hybrid Quantum-Classical CNN (HQ-CNN)

HQ-CNN integrates a shallow classical CNN with a quantum feature branch to combine
efficient classical processing with quantum-derived representations. The pipeline is illustrated
in Figure 1.
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Figure 1. HQ-CNN architecture. A 16x16 grayscale image feeds two branches: (i) a classical
pathway (Flatten — Dense(1024) — Dropout(0.5) — Dense(512) — Dropout(0.3) = h.); and (ii)
a quantum pathway that normalises the flattened vector, performs amplitude embedding into 8

qubits, applies fixed RX(m/3) rotations with linear CNOT entanglement, and measures Pauli-Z

a.

expectations to produce an 8-D vector projected by Dense(512) to hy. The features are

concatenated and fed to a softmax classifier.

Classical branch

16x16 grayscale inputs are flattened and passed to two fully connected layers (1024, 512;
ReLU) with Dropout (0.5, 0.3). This lightweight pathway provides a compact, nonlinear
embedding of the image.

Quantum feature extraction

Flattened, normalized 256-D vectors are amplitude-encoded into 8 qubits. Each qubit
receives a fixed RX(m/3) rotation; linear entanglement is introduced via chained CNOTs.
Expectation values of Pauli-Z on all qubits yield an 8-D quantum feature vector, which is
projected with a Dense(512) layer and concatenated with the classical features before the
final softmax.

Training

Quantum features for train/validation/test are precomputed. The hybrid model uses Adam
(learning rate = 1e-4), 100 epochs, batch size = 64, and validation accuracy monitoring;
labels are one-hot encoded. Although quantum simulation is offline, the pipeline supports
end-to-end differentiability via PennyLane’s parameter-shift rule (e.g., with TorchLayer) if
integrated during training.

VGG1l6
A comprehensive transfer learning pipeline was established utilizing the VGG16

architecture, which was pretrained on the extensive ImageNet dataset, deliberately excluding
the top classification layers. To ensure consistency in input dimensions, all images were
meticulously resized to a standard 224x224 pixels in RGB format. The convolutional base of the
VGG16 model was intentionally frozen during the training process, allowing for the extraction
of rich and relevant features from the images, which were then flattened for further processing.

The classifier architecture was thoughtfully designed to enhance performance and mitigate
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overfitting, incorporating the following layers:
a. A Dense layer with 1024 neurons, followed by a Dropout layer with a drop rate of 0.5 to
promote regularization
b. A subsequent Dense layer with 512 neurons, again accompanied by a Dropout layer, this
time set to 0.3
The output was produced by a softmax layer, facilitating multi-class classification. Training
was conducted over 100 epochs using the Adam optimizer, configured with a learning rate of
0.0001 and a batch size of 64. Before the training of the classifier, the relevant features were
meticulously extracted from the frozen convolutional base, thereby setting the stage for
practical model training and performance evaluation.

5. Evaluation Protocol

All models were evaluated on the same test set to ensure consistency and comparability in
performance assessments. The evaluation metrics included several key indicators: accuracy,
precision, recall, and F1-score, both in macro and weighted forms. Additionally, per-class
accuracy was calculated to understand how well the models performed on each class. At the
same time, the confusion matrix provided a detailed breakdown of the predictions, highlighting
true positives, false positives, and false negatives.

To gain insights into the computational costs associated with the HQ-CNN model
specifically, training time, quantum feature engineering time, and prediction time were also
meticulously recorded. This comprehensive approach not only enables a robust evaluation of
model performance but also facilitates an understanding of the models' efficiency and
scalability in practical applications.

FINDINGS AND DISCUSSION

This section reports the experimental evaluation of the Hybrid-Quantum CNN (HQ-CNN)

against VGG16 on the RAF-DB Basic and Compound subsets. We assess classification accuracy,
computational time, and error patterns via confusion matrices and classification reports, while

testing robustness by varying epochs, learning rates, and batch sizes. Overall, the quantum-

enhanced model demonstrates measurable gains in accuracy and efficiency, and it better captures

nuanced expressions.

1. The Experimental Results
Table 2 summarises results across hyperparameter settings for both subsets: each row lists
(epochs, learning rate, batch size), and columns report each model’s accuracy and runtime. The
table reveals sensitivity trends and the relative advantages of HQ-CNN over VGG16.

Table 2. Performance Comparison

A Ti
Subset of . Accuracy ceuracy Time tme
Learning Batch of Model
No the — Epoch —pite  Ssize of Hybrid-  Model o brid-
Dataset VGG16 > VGG16 Y
Quantum Quantum
1 70 0,001 16 23.78% 38.87% 150.05 s 113.3s
2 70 0,001 64 41.69% 45.06% 93.58s 74.42 s
3 Basic 70 0,0001 16 47.23% 49.62% 168.20s  114.96s
4 70 0,0001 64 45.82% 47.01% 95.69 s 74.14 s
5 100 0,001 16 29.97% 39.74% 201.08s  143.94s
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A Ti
Subset of . Accuracy ccuracy Time me
Learning Batch of Model
No the Epoch Rate Size of Hybrid Model Hybrid
Dataset VGG16 Y VGG16 Y
Quantum Quantum
6 100 0,001 64 39.52% 46.25% 102.68 s 81.85s
7 100 0,0001 16 48.43% 49.73% 212.27 s 138.76 s
8 100 0,0001 64 44.73% 45.39% 110.21s 82.01s
9 70 0,001 16 17.65% 31.09% 45.86s 39.50s
10 70 0,001 64 26.05% 31.09% 40.44 s 26.48s
11 70 0,0001 16 34.45% 31.93% 60.81s 36.37 s
12 70 0,0001 64 26.89% 28.99% 4423 s 25.50s
——— Compound
13 100 0,001 16 18.49% 32.35% 60.69 s 4431s
14 100 0,001 64 21.01% 31.51% 33.32s 28.51s
15 100 0,0001 16 30.67% 32.35% 68.15s 4430 s
16 100 0,0001 64 30.25% 32.35% 43.28s 2892s
VGG16 vs QCNN Accuracy Performance VGG16 vs QCNN Computational Performance
50 1 — VGG16 — VGG16
QCNN 2001 QCNN
45 4
175 1
407 % 150 -
z £
g 35 1 Tgﬂ 125
g 301 /\ g 100
£
254 ¢
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201
25 A
i é Z:) t:I 5‘ é 7I é é 1‘0 l‘l 1‘2 ll3 £4 1‘5 llﬁ i 2‘ é All flx é 7‘ é ‘5 lb 1‘1 1‘2 1‘3 ll4 £5 £6
(a) (b)
Figure 2a. VGG16 vs QCNN Accuracy Figure 2b. VGG16 vs QCNN Computational
Performance Performance.

The experimental results demonstrate significant performance differences between the
VGG16 and Hybrid-Quantum CNN (QCNN) models on both the Basic and Compound subsets. For
instance, with a configuration of 70 epochs, a learning rate of 0.001, and a batch size of 16, the
Hybrid-Quantum CNN achieved an accuracy of 38.87% on the Basic subset, outperforming
VGG16's 23.78% by approximately 15 percentage points. Similarly, in the Compound subset, the
Hybrid-Quantum model reached 31.09% accuracy, compared to VGG16's 17.65%, indicating
gains of about 13-14%.

While increasing the number of epochs generally led to longer computation times for both
models, the accuracy improvements were not always proportional to the increase in epochs
(Figure 2). Lower learning rates (0.0001) improved training stability and accuracy, and smaller
batch sizes (16) slightly enhanced accuracy but increased training duration. Overall, the Hybrid-
Quantum CNN consistently surpassed VGG16 in accuracy and computational efficiency,
particularly in recognising complex compound emotions. The accompanying accuracy and
computational time graph further reinforces these findings, showcasing the Hybrid-Quantum
approach's potential for real-time facial emotion recognition.
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Actual Label

Actual Label

2. The Comparison of the Confusion Matrix

The confusion matrix (Figures 3 and 4) shows the performance of the VGG16 model and
the Hybrid-Quantum CNN (QCNN) on the basic expressions subset and compound facial
expressions. Each row represents the actual emotion, while each column shows the predicted
emotion. Comparing these matrices reveals the accuracy and misclassification patterns of each
model in interpreting facial expressions.

Confusion Matrix of VGG16 on Basic Subset Confusion Matrix of Hybrid QCNN on Basic Subset
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Figure 3. Confusion Matrix of VGG16 and Hybrid-Quantum CNN on The Basic Expressions
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Figure 4. Confusion Matrix of VGG16 and Hybrid-Quantum CNN on The Compound
Expressions Subset

a. Basic Subset
HQ-CNN reduces key confusions and increases true positives for Anger (102 vs. 99),
Happiness (119 vs. 101), and Surprise (109 vs. 98), with comparable results for Fear
(25 vs. 25), but a cleaner error profile. Disgust shows fewer spillovers into Sadness
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despite a slight drop in corrects, while Neutral improves modestly. The principal
regression is Sadness (94 vs 114 for VGG16), indicating class-specific tuning needs.
b. Compound Subset

HQ-CNN improves several overlap-heavy classes (“Happily Surprised” (17 vs 14),
“Angrily Disgusted” (7 vs 5), and “Fearfully Surprised” (15 vs 9)) and slightly betters
“Sadly Fearful” (3 vs 2) with a more balanced error spread. “Sadly Angry” remains a
VGG16 strength. Overall, HQ-CNN sharpens boundaries in surprise-involving and
nuanced categories, while targeted refinements are needed for specific negative blends.

3. The Classification Report Comparison

Figures 5 and 6 compare precision, recall, and F1 scores for each emotion class on the basic
expressions subset. This graph succinctly highlights the strengths and weaknesses of VGG16
and the Hybrid-Quantum CNN, making it clear where quantum enhancements yield
improvements and where traditional methods still excel.

The Classification Report Comparison for Basic Expressions Subset
0.74

0.7 1

0.6

0.5

0.4+

Scores
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0.21 VGG16 Precision

QCNN Precision
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QCNN F1-Score
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Figure 5. The Classification Report Comparison for Basic Expressions Subset

The Classification Report Comparison for Compound Expressions Subset
06

VGG16 Precision
QCNN Precision
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QCNN Recall
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0.6 0.58
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Figure 6. The Classification Report Comparison for Compound Expressions Subset
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a. Basic Subset
VGG16 and HQ-CNN perform similarly on Anger and Disgust; VGG16 is stronger on Fear
(notably higher precision), while HQ-CNN improves Happiness, Neutral, and Surprise
via higher recall and net F1 gains. Sadness is effectively a tie (precision-recall trade-off
yields near-equal F1).

b. Compound Subset
HQ-CNN shows more evident advantages in “Fearfully Surprised” and “Angrily
Surprised” (higher F1), offers balanced precision-recall on “Happily Surprised” (vs
VGG16's high-precision/low-recall), and is comparable on “Happily Disgusted” and
“Angrily Disgusted”. Both models struggle with “Sadly Fearful” (HQ-CNN performs
modestly better), while “Sadly Angry” remains a weakness for HQ-CNN (VGG16
achieves a higher F1).

4. Discussion

This study compares a traditional VGG16 baseline with a Hybrid-Quantum CNN (QCNN) on
RAF-DB (Basic and Compound subsets). Across metrics (accuracy, runtime, and error profiles),
QCNN consistently outperforms VGG16. On the Basic subset, it achieves higher accuracy while
reducing computation time by more than 20%. On the Compound subset, under 70 epochs,
learning rate = 0.001, batch = 16, QCNN achieves 31.09% accuracy versus 17.65% for VGG16,
with more apparent separation in difficult classes (e.g., “Fearfully Surprised”, “Angrily
Surprised”).

Performance gains are not uniform: VGG16 is stronger for Fear in Basic, and QCNN
underperforms on “Sadly Angry”. Both models are sensitive to hyperparameters; lower
learning rates and smaller batches improve accuracy but increase training time. Overall,
quantum-enhanced feature mapping yields robust improvements, particularly for compound
emotions, suggesting QCNN as a promising and resource-conscious option. Future work will
focus on circuit optimisation and integrating attention or multi-scale features to address
remaining class-specific weaknesses.

CONCLUSIONS
This study demonstrates that integrating quantum computing principles into convolutional

neural networks can significantly enhance facial emotion recognition performance. The Hybrid-
Quantum CNN achieved higher accuracy, especially for complex compound expressions, and
reduced computational time compared to the traditional VGG16 model. Notably, improvements in
capturing nuanced expressions such as Fearfully Surprised and Angrily Surprised underscore the
potential of quantum-enhanced architectures in addressing the inherent challenges of FER.

However, specific categories, such as Sadly Angry, still pose significant challenges, suggesting
that further refinements are needed. Future research should optimise quantum circuits, integrate
advanced feature extraction techniques (e.g., attention mechanisms and multi-scale processing),
and expand the dataset to include more diverse and balanced samples. These directions will help
bridge the remaining gaps and pave the way for robust, real-time emotion recognition systems in
practical applications. Overall, the findings provide a strong foundation for the continued
exploration of quantum-enhanced deep learning in affective computing, with promising
implications for improving accuracy and efficiency in facial emotion recognition.

LIMITATIONS & FURTHER RESEARCH
Limitations
This study has several constraints:
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1. The comparative scope is narrow: results are reported against VGG16 (and a resolution-
matched VGG16-Tiny control), without stronger modern baselines (e.g., ResNet,
EfficientNet, or transformer models), which limits external validity

2. There is an input-modality mismatch between models: HQ-CNN operates on 16x16
grayscale, while VGG16 uses 224x224 RGB; although VGG16-Tiny helps control for
resolution, residual modality effects may remain

3. The absolute accuracies—particularly on compound emotions—remain modest for
deployment-grade systems, indicating headroom for methodological improvement

4. Reported scores are based on single-run training without multi-seed repeats, dispersion
(mean * SD), or statistical significance testing, so robustness under re-runs is
undetermined.

5. The quantum branch is evaluated via offline simulation with precomputed quantum
features; fully end-to-end differentiable training through the circuit and execution on real
hardware are not demonstrated.

6. Runtime accounting may be confounded if quantum feature extraction is not included
uniformly in wall-clock comparisons.

7. The evaluation is single-dataset (RAF-DB), whose compound subset is relatively small and
imbalanced, and class-specific weaknesses persist (e.g., certain negative/overlapping
emotions), suggesting sensitivity to label ambiguity and skew.

8. The hyperparameter search is limited, and reproducibility could be strengthened with
fuller reporting of software/hardware environments.

Future Work
We see four priority directions, as presented below:

1. Broaden baselines and controls: include ResNet/EfficientNet and transformer models;
maintain strictly resolution- and modality-matched classical controls to isolate quantum
effects.

2. Strengthen experimental rigour: train with = 5 random seeds, report mean * SD and paired
significance tests (e.g., Wilcoxon); expand the search over optimizers, learning-rate
schedules, batch sizes, and regularization.

3. Advance the hybrid pipeline: enable end-to-end training via parameter-shift gradients (e.g.,
PennyLane TorchLayer), study convergence/gradient variance, and benchmark on noisy
intermediate-scale hardware to assess practicality; report fair efficiency metrics (end-to-
end wall clock including preprocessing) plus FLOPs/parameter counts.

4. Improve modelling and evaluation: explore richer quantum ansitze (deeper layers,
alternative entanglement topologies, learnable encodings), attention/multi-scale modules,
and ablations to attribute gains; extend to additional FER datasets and apply imbalance-
aware learning (class weights, focal loss, calibrated thresholds), emphasizing macro-F1 and
per-class analyses. To facilitate reuse and verification, future releases should include code,
circuit diagrams, training scripts, and environment specs, alongside a lightweight inference
demo for real-time feasibility.
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